Lesson 4: Diagonalization

October 5, 2014
The rough idea: From the preceding lesson, we know that a matrix A represents a linear mapping in a certain basis. On the other hand, the matrix associated with a linear mapping changes when we change the basis. So, maybe there exists some basis where the matrix is “specially nice”...
Definition

Let $f : V \rightarrow V$ be an endomorphism. We say that $\lambda \in \mathbb{R}$ (or \mathbb{C}) is an eigenvalue of f if there exists $\vec{v} \in V$, $\vec{v} \neq \vec{0}$, such that $f(\vec{v}) = \lambda \vec{v}$. Furthermore, in that case we say that \vec{v} is an eigenvector associated with λ.

Examples: Khan Academy (click)
How do we compute the eigenvalues: (Khan Academy (click))

Properties:

(1) $p(\lambda) = |A - \lambda I|$ is called the **characteristic polynomial** of the matrix A. Its degree is $\text{dim}(V)$.

(2) It is usual to refer to “the eigenvalues of the matrix” (values such that $A \cdot \vec{v} = \lambda \vec{v}$), instead of the linear mapping.
How do we compute the eigenvalues: (Khan Academy (click))

Properties:

(3) If λ_i is an eigenvalue, then it is a root of $p(\lambda)$, and therefore

$$p(\lambda) = (\lambda - \lambda_i)^{n_i} \cdots$$

The number n_i is called the algebraic multiplicity of λ_i.

(4) When we consider vector spaces over \mathbb{R}, the eigenvalues can be either real or complex.
How do we compute the eigenvalues: (Khan Academy (click))

Properties:

(5) If λ is an eigenvalue of A and $A \cdot \vec{v} = \lambda \vec{v}$, we say that \vec{v} is an eigenvector associated with λ.
Proposition

The set of all the eigenvectors associated with a same eigenvalue \(\lambda \) of a matrix \(A \), is a vector subspace.

Proof. Khan Academy (click)

Definition

For each eigenvalue \(\lambda_i \), the set of eigenvectors associated with it is called the eigenspace of \(\lambda_i \). We represent it by \(L_{\lambda_i} \). From the above result, it is a vector subspace, and its dimension is called the geometric multiplicity of \(\lambda_i \).
Observations:

1. L_{λ_i} is the solution of $(A - \lambda_i I) \cdot \vec{v} = \vec{0}$.
2. $\dim(L_{\lambda_i}) = n - \text{rank}(A - \lambda_i I)$, where n is the order of A.
3. Denoting the algebraic multiplicity of λ_i by n_i, it holds that

 $$1 \leq \dim(L_{\lambda_i}) \leq n_i$$

Example: Khan Academy (click)
Theorem

Let $f : V \rightarrow V$ be a linear mapping with p different eigenvalues $\lambda_1, \ldots, \lambda_p$. Then the eigenvectors $\vec{v}_1, \ldots, \vec{v}_p$ associated with them are linearly independent.
Introduction: every square matrix A of order n is the matrix associated with some endomorphism $f : V_n \to V_n$ in some basis, i.e. $A = M(f; B, B)$. Furthermore, if we change the basis $B \to B'$, then the matrix changes according to $A' = P^{-1} \cdot A \cdot P$. The question is: given A, is there any basis where the expression of the corresponding endomorphism is diagonal? In other words, given A, is it similar to any diagonal matrix?

Definition

Let A be a square matrix, and let f be the endomorphism that it represents. We say that A (or f) is diagonalizable if there exists some basis such that the matrix associated with f in that basis is diagonal (equivalently, if it is similar to some diagonal matrix).
Diagonalization of a square matrix

Theorem

An endomorphism \(f : V_n \to V_n \) is diagonalizable if and only if there exists a basis of \(V_n \) consisting of eigenvectors.

Proof: Khan Academy (click)
Diagonalization of a square matrix

Theorem

Let V be a vector space over \mathbb{R} of dimension n, and let $f : V_n \rightarrow V_n$ be an endomorphism. Then f is diagonalizable (over the reals) if and only if the following two conditions hold:

(i) The total number of real eigenvalues, counting multiplicities, is n.

(ii) The geometric multiplicity of each eigenvalue equals its algebraic multiplicity.

Example and observations: Khan Academy (click)