Extensions of discrete classical orthogonal polynomials beyond the orthogonality

Roberto S. Costas-Santos
(joint work with J. F. Sánchez-Lara)
rscosa@gmail.com
www.rscosa.com

November 5th, 2008
Motivation

1. The Classical orthogonal polynomials
2. The Schemes

The discrete case

1. The Hahn polynomials
2. The other Δ-families
3. Limit relations between hypergeometric orthogonal polynomials
4. Little appendix

The q case

1. The q-families
2. The q-Hahn polynomials
Basic properties

• Let \((P_n)\) be a polynomial sequence and \(u\) be a linear functional.

• Property of orthogonality

\[
\langle u, P_n P_m \rangle = d_n^2 \delta_{n,m}.
\]

• Distributional equation:

\[
D(\phi u) = \psi u, \quad \deg \psi \geq 1,
\]

where

\[
D = \frac{d}{dx}, \text{ or } D = \nabla, \text{ or } D = \frac{\nabla}{\nabla x(s + 1/2)}.
\]

• Three-term recurrence relation:

\[
x P_n(x) = \alpha_n P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n+1}(x).
\]
Basic properties

- Let \((P_n)\) be a polynomial sequence and \(u\) be a linear functional.
- Property of orthogonality
 \[
 \langle u, P_n P_m \rangle = d_n^2 \delta_{n,m}.
 \]
- Distributional equation:
 \[
 D(\phi u) = \psi u, \quad \deg \psi \geq 1,
 \]
 where
 \[
 D = \frac{d}{dx}, \text{ or } D = \nabla, \text{ or } D = \frac{\nabla}{\nabla x(s + 1/2)}.
 \]
- Three-term recurrence relation:
 \[
 x P_n(x) = \alpha_n P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n+1}(x).
 \]
Basic properties

- Let \((P_n)\) be a polynomial sequence and \(u\) be a linear functional.
- Property of orthogonality
 \[
 \langle u, P_n P_m \rangle = d_n^2 \delta_{n,m}.
 \]
- Distributional equation:
 \[
 D(\phi u) = \psi u, \quad \text{deg } \psi \geq 1,
 \]
 where
 \[
 D = \frac{d}{dx}, \quad \text{or } D = \nabla, \quad \text{or } D = \frac{\nabla}{\nabla x(s + 1/2)}.
 \]
- Three-term recurrence relation:
 \[
 x P_n(x) = \alpha_n P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n+1}(x).
 \]
Basic properties

- Let \((P_n)\) be a polynomial sequence and \(u\) be a linear functional.
- Property of orthogonality
 \[
 \langle u, P_n P_m \rangle = d_n^2 \delta_{n,m}.
 \]
- Distributional equation:
 \[
 \mathcal{D}(\phi u) = \psi u, \quad \deg \psi \geq 1,
 \]
 where
 \[
 \mathcal{D} = \frac{d}{dx}, \text{ or } \mathcal{D} = \nabla, \text{ or } \mathcal{D} = \frac{\nabla}{\nabla x(s + 1/2)}.
 \]
- Three-term recurrence relation:
 \[
 xP_n(x) = \alpha_n P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n+1}(x).
 \]
The families

- **Continuous Classical OP:** Jacobi, Hermite, Laguerre and Bessel.
- **Δ-Classical OP:** Hahn, Racah, Meixner, Krawtchouk, Charlier, etc.
- **q-Classical OP:** Askey Wilson, q-Racah, q-Hahn, Continuous q-Hahn, Big q-Jacobi, q-Hermite, q-Laguerre, Al-Salam-Chihara, Stieltjes-Wigert, etc.
The families

- **Continuous Classical OP:** Jacobi, Hermite, Laguerre and Bessel.
- **Δ-Classic OP:** Hahn, Racah, Meixner, Krawtchouk, Charlier, etc.
- **q-Classic OP:** Askey Wilson, q-Racah, q-Hahn, Continuous q-Hahn, Big q-Jacobi, q-Hermite, q-Laguerre, Al-Salam-Chihara, Stieltjes-Wigert, etc.
The families

- Continuous Classical OP: Jacobi, Hermite, Laguerre and Bessel.
- Δ-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier, etc.
- q-Classical OP: Askey Wilson, q-Racah, q-Hahn, Continuous q-Hahn, Big q-Jacobi, q-Hermite, q-Laguerre, Al-Salam-Chihara, Stieltjes-Wigert, etc.
Basic properties

Hypergeometric series: \((n = 1, 2, \ldots, N)\)

\[
h_n^{\alpha,\beta}(x; N) = \frac{(-N, \alpha + 1)_n}{(\alpha + \beta + n + 1)_n} \binom{3F_2}{-n, \alpha + \beta + n + 1, -x}{-N, \alpha + 1}.
\]

Property of orthogonality.

\[
\langle u^H, h_n^{\alpha,\beta} h_m^{\alpha,\beta} \rangle = d_n^2 \delta_{n,m}.
\]

Distributional equation:

\[
\Delta (x(\beta + N + 1 - x)u^H) = ((\alpha + 1)N - (\alpha + \beta + 2)x)u^H.
\]

Integral representation with some boundary condition:

\[
\langle u^H, P \rangle = \sum_{x=0}^{N} P(x) \frac{\Gamma(\beta + N + 1 - x)\Gamma(\alpha + 1 + x)}{\Gamma(1 + x)\Gamma(N + 1 - x)}.
\]
Basic properties

- **Hypergeometric series:** \((n = 1, 2, \ldots, N)\)

\[
h_n^{\alpha,\beta}(x; N) = \frac{(-N, \alpha + 1)_n}{(\alpha + \beta + n + 1)_n} {}_3F_2\left(\begin{array}{c} -n, \alpha + \beta + n + 1, -x \\ -N, \alpha + 1 \end{array} \right| 1 \right).
\]

- **Property of orthogonality.**

\[
\langle u^H, h_n^{\alpha,\beta} h_m^{\alpha,\beta} \rangle = d_n^2 \delta_{n,m}.
\]

- **Distributional equation:**

\[
\Delta(x(\beta + N + 1 - x)u^H) = ((\alpha + 1)N - (\alpha + \beta + 2)x)u^H.
\]

- **Integral representation with some boundary condition:**

\[
\langle u^H, P \rangle = \sum_{x=0}^{N} P(x) \frac{\Gamma(\beta + N + 1 - x)\Gamma(\alpha + 1 + x)}{\Gamma(1 + x)\Gamma(N + 1 - x)}.
\]
Basic properties

- Hypergeometric series: \((n = 1, 2, \ldots, N)\)

\[
h_n^{\alpha, \beta}(x; N) = \frac{(-N, \alpha + 1)_n}{(\alpha + \beta + n + 1)_n} {}_3F_2\left(\begin{array}{c} -n, \alpha + \beta + n + 1, -x \\ -N, \alpha + 1 \end{array} \middle| 1 \right).
\]

- Property of orthogonality.

\[
\langle u^H, h_n^{\alpha, \beta} h_m^{\alpha, \beta} \rangle = d_n^2 \delta_{n,m}.
\]

- Distributional equation:

\[
\Delta(x(\beta + N + 1 - x)u^H) = ((\alpha + 1)N - (\alpha + \beta + 2)x)u^H.
\]

- Integral representation with some boundary condition:

\[
\langle u^H, P \rangle = \sum_{x=0}^{N} P(x) \frac{\Gamma(\beta + N + 1 - x)\Gamma(\alpha + 1 + x)}{\Gamma(1 + x)\Gamma(N + 1 - x)}.
\]
Basic properties

- Hypergeometric series: \((n = 1, 2, \ldots, N)\)

\[
h_{n}^{\alpha, \beta}(x; N) = \frac{(-N, \alpha + 1)_{n}}{(\alpha + \beta + n + 1)_{n}} {3\choose 2}_{n}(-n, \alpha + \beta + n + 1, -x | 1).
\]

- Property of orthogonality.

\[
\langle u^{H}, h_{n}^{\alpha, \beta} h_{m}^{\alpha, \beta} \rangle = d_{n}^{2} \delta_{n,m}.
\]

- Distributional equation:

\[
\Delta(x(\beta + N + 1 - x)u^{H}) = ((\alpha + 1)N - (\alpha + \beta + 2)x)u^{H}.
\]

- Integral representation with some boundary condition:

\[
\langle u^{H}, P \rangle = \sum_{x=0}^{N} P(x) \frac{\Gamma(\beta + N + 1 - x)\Gamma(\alpha + 1 + x)}{\Gamma(1 + x)\Gamma(N + 1 - x)}.
\]
Continuous Hahn polynomials

- Hypergeometric series:
 \[p_n(x; a, b, c, d) = D_n \, _3F_2 \left(\begin{array}{c} -n, n + a + b + c + d - 1, a + ix \\ a + c, a + d \end{array} \right)_1. \]

- Property of orthogonality: \[\langle u^{cH}, p_n p_m \rangle = d_n^2 \delta_{n,m}. \]

- Distributional equation: \[\delta f(x) = f(x + i/2) - f(x - i/2) \]
 \[\frac{\delta}{\delta x} ((c - ix)(d - ix)) u^{cH} = p_1(x; a, b, c, d) u^{cH}. \]

- Integral representation with some boundary condition:
 \[\langle u^{cH}, P \rangle = \int_C P(z) \Gamma(a + iz) \Gamma(b + iz) \Gamma(c - iz) \Gamma(d - iz) \, dz, \]
 where \(C \) is a contour on \(\mathbb{C} \) from \(-\infty \) to \(\infty \) which separates the increasing poles from the decreasing ones.
Continuous Hahn polynomials

- Hypergeometric series:
 \[p_n(x; a, b, c, d) = D_n \, 3F_2 \left(\begin{array}{c} -n, n + a + b + c + d - 1, a + ix \\ a + c, a + d \end{array} \right | 1 \).

- Property of orthogonality: \(\langle u^{cH}, p_n p_m \rangle = d_n^2 \delta_{n,m} \).

- Distributional equation:
 \[\frac{\delta}{\delta x} ((c - ix)(d - ix))u^{cH} = p_1(x; a, b, c, d)u^{cH}. \]

- Integral representation with some boundary condition:
 \[\langle u^{cH}, P \rangle = \int_C P(z) \Gamma(a + iz) \Gamma(b + iz) \Gamma(c - iz) \Gamma(d - iz) \, dz, \]
 where \(C \) is a contour on \(\mathbb{C} \) from \(-\infty\) to \(\infty \) which separates the increasing poles from the decreasing ones.
Continuous Hahn polynomials

- Hypergeometric series:
 \[p_n(x; a, b, c, d) = D_n \, {}_3F_2 \left(\begin{array}{c} -n, n + a + b + c + d - 1, a + ix \\ a + c, a + d \end{array} \right| 1 \right). \]

- Property of orthogonality:
 \[\langle u^{cH}, p_n p_m \rangle = d_n^2 \delta_{n,m}. \]

- Distributional equation:
 \[\delta f(x) = f(x + i/2) - f(x - i/2) \]
 \[\frac{\delta}{\delta x} \left((c - ix)(d - ix)\right) u^{cH} = p_1(x; a, b, c, d) u^{cH}. \]

- Integral representation with some boundary condition:
 \[\langle u^{cH}, P \rangle = \int_C P(z) \Gamma(a + iz) \Gamma(b + iz) \Gamma(c - iz) \Gamma(d - iz) \, dz, \]
 where \(C \) is a contour on \(\mathbb{C} \) from \(-\infty\) to \(\infty \) which separates the increasing poles from the decreasing ones.
Continuous Hahn polynomials

- Hypergeometric series:
 \[p_n(x; a, b, c, d) = D_n {}_3F_2 \left(\begin{array}{c} -n, n + a + b + c + d - 1, a + ix \\ a + c, a + d \end{array} \right) \]

- Property of orthogonality: \(\langle u^{cH}, p_n p_m \rangle = d_n^2 \delta_{n,m} \).
- Distributional equation:
 \[\delta f(x) = f(x + i/2) - f(x - i/2) \]
 \[\frac{\delta}{\delta x} \left((c - ix)(d - ix) \right) u^{cH} = p_1(x; a, b, c, d) u^{cH}. \]

- Integral representation with some boundary condition:
 \[\langle u^{cH}, P \rangle = \int_C P(z) \Gamma(a + iz) \Gamma(b + iz) \Gamma(c - iz) \Gamma(d - iz) \, dz, \]
 where \(C \) is a contour on \(\mathbb{C} \) from \(-\infty \) to \(\infty \) which separates the increasing poles from the decreasing ones.
The limit relation $H\text{-}cH$

- The hypergeometric serie, re-written:

$$h_{n}^{\alpha,\beta}(x; N) = r_{n} \sum_{k=0}^{n} \frac{(-n, \alpha + \beta + n + 1, -x)_{k}(-N + k)_{n-k}}{(\alpha + 1, 1)_{k}},$$

- The limit relation:

$$h_{n}^{\alpha,\beta}(x; N) = \lim_{\varepsilon \to 0} (-i)^{n} p_{n}(ix; 0, \beta + N + \varepsilon + 1, -N - \varepsilon, \alpha + 1).$$
The limit relation $H-cH$

- The hypergeometric serie, re-written:

$$h_{n}^{\alpha,\beta}(x; N) = r_{n} \sum_{k=0}^{n} \frac{(-n, \alpha + \beta + n + 1, -x)_{k} (-N + k)_{n-k}}{(\alpha + 1, 1)_{k}},$$

- The limit relation:

$$h_{n}^{\alpha,\beta}(x; N) = \lim_{\varepsilon \to 0} (-i)^{n} p_{n}(ix; 0, \beta + N + \varepsilon + 1, -N - \varepsilon, \alpha + 1).$$
About the zeros of the extended Hahn polynomials

Figure: Zeros of $h_{15}^{1,1}(x; 5)$ (left) and $h_{15}^{1,15}(x; 5)$ (right)
The factorization

For any integer k, $0 \leq k \leq n$,

$$\Delta^k h_{n}^{\alpha,\beta}(x; N) = (n - k + 1)_k h_{n-k}^{\alpha+k,\beta+k}(x; N - k),$$

$$\nabla^k h_{n}^{\alpha,\beta}(x; N) = (n - k + 1)_k h_{n-k}^{\alpha+k,\beta+k}(x - k; N - k).$$

The factorization:

$$h_{n}^{\alpha,\beta}(x; N) = (x - N)_{N+1}(-i)^{n-N-1}\rho_{n-N-1}(ix; N + 1, \beta + N + 1, 1,$$

$$\alpha + 1) = (x - N)_{N+1}(-i)^{n-N-1}\rho_{n-N-1}((x - \frac{N}{2}) i; 1 + \frac{N}{2}, \beta + 1 +$$

$$+ \frac{N}{2}, 1 + \frac{N}{2}, \alpha + 1 + \frac{N}{2}).$$
The factorization

- For any integer k, $0 \leq k \leq n$,

\[
\Delta^k h_{n,k}^{\alpha,\beta}(x; N) = (n - k + 1) h_{n-k}^{\alpha+k,\beta+k}(x; N - k),
\]

\[
\nabla^k h_{n,k}^{\alpha,\beta}(x; N) = (n - k + 1) h_{n-k}^{\alpha+k,\beta+k}(x - k; N - k).
\]

- The factorization:

\[
h_{n,k}^{\alpha,\beta}(x; N) = (x - N)_{N+1}(-i)^{n-N-1} p_{n-N-1}(ix; N + 1, \beta + N + 1, 1, \\
\alpha + 1) = (x - N)_{N+1}(-i)^{n-N-1} p_{n-N-1}((x - \frac{N}{2}) i; 1 + \frac{N}{2}, \beta + 1 + \\
+ \frac{N}{2}, 1 + \frac{N}{2}, \alpha + 1 + \frac{N}{2}).
\]
A characterization Theorem for the Hahn polynomials

Theorem: Let N be a non-negative integer and $\alpha, \beta \in \mathbb{C}$ such that:

$-\alpha, -\beta \notin \{1, 2, \ldots, N, N + 2, \ldots\}$, and $-\alpha - \beta \notin \{1, 2, \ldots, 2N + 1, 2N + 3, \ldots\}$. Then the family of Hahn polynomials is a OPS with respect to the Δ-Sobolev inner product:

$$(f, g)_S = \sum_{x=0}^{N} f(x)g(x)\rho^{\alpha,\beta}(x; N) + \int_C (\Delta^{N+1}f(z))(\Delta^{N+1}g(z))\omega^{\alpha,\beta}(z; N)dz,$$

where

$$\rho^{\alpha,\beta}(x; N) = \frac{\Gamma(\beta + N + 1 - x)\Gamma(\alpha + x + 1)}{\Gamma(N + 1 - x)\Gamma(x + 1)},$$

$$\omega^{\alpha,\beta}(z; N) = \Gamma(-z)\Gamma(\beta + N + 1 - z)\Gamma(1 + z)\Gamma(\alpha + N + 2 + z),$$

and C is a complex contour from $-\infty i$ to ∞i which separates the poles of the functions $\Gamma(-z)\Gamma(\beta + N + 1 - z)$ and $\Gamma(1 + z)\Gamma(\alpha + N + 2 + z)$.
Wilson \rightarrow Racah

- **Factorization:** If $\alpha + 1 = -N$ we get

 \[
 R_n(\lambda(x); \alpha, \beta, \gamma, \delta) = R_{N+1}(\lambda(x); -N - 1, \beta, \gamma, \delta)(-1)^{n-N-1} \\
 \times W_{n-N-1} \left(\left(i \left(x + \frac{\gamma+\delta+1}{2} \right) \right)^2 ; N + \frac{\gamma+\delta+3}{2}, -\frac{\gamma-\delta+1}{2}, \beta + \frac{-\gamma+\delta+1}{2}, \frac{\gamma-\delta+1}{2} \right).
 \]

- **The Δ-Sobolev orthogonality:**

 \[
 \langle p, q \rangle_S = \langle p, q \rangle_d + \left\langle \left(\frac{\Delta}{\Delta \lambda} \right)^{N+1} p, \left(\frac{\Delta}{\Delta \lambda} \right)^{N+1} q \right\rangle_C,
 \]

 with

 \[
 \langle p, q \rangle_d = \sum_{x=0}^{N} p(x)q(x) \frac{(\alpha + 1, \beta + \delta + 1, \gamma + 1, \gamma + \delta + 1, (\gamma + \delta + 3)/2)_x}{(-\alpha + \gamma + \delta + 1, -\beta + \gamma + 1, (\gamma + \delta + 1)/2, \delta + 1, 1)_x},
 \]

 \[
 \langle p, q \rangle_C = \int_C p(z^2)q(z^2)\nu(zi + i + i(\gamma + \delta + N)/2)\nu(-(zi + i + i(\gamma + \delta + N)/2))dz.
 \]
Wilson → Racah

- **Factorization:** If $\alpha + 1 = -N$ we get

 \[R_n(\lambda(x); \alpha, \beta, \gamma, \delta) = R_{N+1}(\lambda(x); -N - 1, \beta, \gamma, \delta)(-1)^{n-N-1} \times W_{n-N-1} \left(\left(i \left(x + \frac{\gamma+\delta+1}{2} \right) \right)^2 ; N + \frac{\gamma+\delta+3}{2}, \frac{-\gamma-\delta+1}{2}, \beta + \frac{-\gamma+\delta+1}{2}, \frac{\gamma-\delta+1}{2} \right). \]

- **The Δ-Sobolev orthogonality:**

 \[\langle p, q \rangle_S = \langle p, q \rangle_d + \left\langle (\Delta/\Delta \lambda)^{N+1} p, (\Delta/\Delta \lambda)^{N+1} q \right\rangle_c, \]

 with

 \[\langle p, q \rangle_d = \sum_{x=0}^{N} p(x)q(x) \frac{(\alpha + 1, \beta + \delta + 1, \gamma + 1, \gamma + \delta + 1, (\gamma + \delta + 3)/2)_x}{(-\alpha + \gamma + \delta + 1, -\beta + \gamma + 1, (\gamma + \delta + 1)/2, \delta + 1, 1)_x}, \]

 \[\langle p, q \rangle_c = \int_C p(z^2)q(z^2)\nu(zi + i + i(\gamma + \delta + N)/2)\nu(-(zi + i + i(\gamma + \delta + N)/2))dz. \]
The others

We get analogous results in the following cases:

- Continuous Dual Hahn polynomials \rightarrow Dual Hahn polynomials.
- Meixner \rightarrow Krawtchouk.
The others

We get analogous results in the following cases:

- Continuous Dual Hahn polynomials \rightarrow Dual Hahn polynomials.
- Meixner \rightarrow Krawtchouk.
The limits relations between the families

- **Racah → Hahn.**

\[
\lim_\delta \to \infty R_n(\lambda(x); -N - 1, \beta + \gamma + N + 1, \gamma, \delta) = h_{n,\beta}^{\gamma}(x; N).
\]

- **Racah → Dual Hahn.**

\[
\lim_\beta \to \infty R_n(\lambda(x); -N - 1, \beta, \gamma, \delta) = R_n(\lambda(x); \gamma, \delta, N).
\]

- **Hahn → Krawtchouk.**

\[
\lim_{t \to \infty} h_n^{(1-p)t,p^t}(x; N) = K_n(x; p, N).
\]

- **Dual Hahn → Krawtchouk.**

\[
\lim_{t \to \infty} R_n(\lambda(x); pt, (1-p)t, N) = K_n(x; p, N).
\]
The limits relations between the families

- **Racah → Hahn.**
 \[
 \lim_{\delta \to \infty} R_n(\lambda(x); -N - 1, \beta + \gamma + N + 1, \gamma, \delta) = h_{n,\beta}(x; N).
 \]

- **Racah → Dual Hahn.**
 \[
 \lim_{\beta \to \infty} R_n(\lambda(x); -N - 1, \beta, \gamma, \delta) = R_n(\lambda(x); \gamma, \delta, N).
 \]

- **Hahn → Krawtchouk.**
 \[
 \lim_{t \to \infty} h_n^{(1-p)t, pt}(x; N) = K_n(x; p, N).
 \]

- **Dual Hahn → Krawtchouk.**
 \[
 \lim_{t \to \infty} R_n(\lambda(x); pt, (1-p)t, N) = K_n(x; p, N).
 \]
The limits relations between the families

- **Racah → Hahn.**
 \[
 \lim_{\delta \to \infty} R_n(\lambda(x); -N - 1, \beta + \gamma + N + 1, \gamma, \delta) = h^{\gamma,\beta}_n(x; N).
 \]

- **Racah → Dual Hahn.**
 \[
 \lim_{\beta \to \infty} R_n(\lambda(x); -N - 1, \beta, \gamma, \delta) = R_n(\lambda(x); \gamma, \delta, N).
 \]

- **Hahn → Krawtchouk.**
 \[
 \lim_{t \to \infty} h_n^{(1-p)t, pt}(x; N) = K_n(x; p, N).
 \]

- **Dual Hahn → Krawtchouk.**
 \[
 \lim_{t \to \infty} R_n(\lambda(x); pt, (1 - p)t, N) = K_n(x; p, N).
 \]
The limits relations between the families

- **Racah → Hahn.**
 $$\lim_{\delta \to \infty} R_n(\lambda(x); -N - 1, \beta + \gamma + N + 1, \gamma, \delta) = h_{n,\beta}^\gamma(x; N).$$

- **Racah → Dual Hahn.**
 $$\lim_{\beta \to \infty} R_n(\lambda(x); -N - 1, \beta, \gamma, \delta) = R_n(\lambda(x); \gamma, \delta, N).$$

- **Hahn → Krawtchouk.**
 $$\lim_{t \to \infty} h_n^{(1-p)t, pt}(x; N) = K_n(x; p, N).$$

- **Dual Hahn → Krawtchouk.**
 $$\lim_{t \to \infty} R_n(\lambda(x); pt, (1-p)t, N) = K_n(x; p, N).$$
Orthogonality relations for Meixner polynomials with general parameter

The Meixner polynomials and continuous Hahn polynomials are related through the following limit relation:

$$\lim_{|t| \to \infty} (-i)^n p_n(ix; 0, -t/c, t, \beta) = M_n(x; \beta, c), \quad n = 0, 1, 2, \ldots.$$

Proposition: For any $\beta, c \in \mathbb{C}$, $c \notin [0, \infty)$ and $-\beta \notin \mathbb{N}$, the following property of orthogonality for the Meixner polynomials fulfills:

$$\int_C M_n(z; c, \beta)z^m \Gamma(-z)\Gamma(\beta+z)(-c)^z dz = 0, \quad 0 \leq m < n, \quad n = 0, 1, 2, \ldots,$$

where C is a complex contour from $-\infty i$ to ∞i separating the increasing poles $\{0, 1, 2, \ldots \}$ from the decreasing poles $\{-\beta, -\beta - 1, -\beta - 2, \ldots \}$.
The examples considered (under construction)

q-Hahn,
q-Racah,
dual q-Hahn,
quantum q-Krawtchouk,
q-Krawtchouk,
affine q-Krawtchouk, and
dual q-Krawtchouk polynomials.
Basic properties

- Basic hypergeometric function: \(n = 1, 2, \ldots, N \)

\[
h_n^{\alpha,\beta}(x; N; q) = \frac{(q^{-N}, q^{\alpha+1}; q)_n}{(q^{\alpha+\beta+n+1}; q)_n} \quad \begin{pmatrix} q^{-n}, q^{\alpha+\beta+n+1}, x \n q^{-N}, q^{\alpha+1} \end{pmatrix}.
\]

- Property of orthogonality.

\[
\langle u^{qH}, h_n^{\alpha,\beta} h_m^{\alpha,\beta} \rangle = d_n^2 \delta_{n,m}.
\]

- Distributional equation:

\[
\mathcal{D}_q(q^{\alpha}(q^{\beta+1}+x - q^{-N})u^{qH}) = h_1^{\alpha,\beta}(x; N; q)u^{qH}.
\]

- Integral representation with some boundary condition:

\[
\langle u^{qH}, P \rangle = \sum_{x=0}^{N} P(x) \frac{(q^{\alpha+1}, q^{-N}; q)_x}{(q, q^{-\beta-N}; q)_x} q^{-(\alpha+\beta)x}.
\]
Basic properties

- Basic hypergeometric function: \((n = 1, 2, \ldots, N)\)

\[
h_n^{\alpha, \beta}(x; N; q) = \frac{(q^{-N}, q^{\alpha+1}; q)_n}{(q^{\alpha+\beta+n+1}; q)_n} \, \, _3\phi_2 \left(\begin{array}{c} q^{-n}, q^{\alpha+\beta+n+1}, x \\ q^{-N}, q^{\alpha+1} \end{array} \right) \bigg| q; q \bigg).
\]

- Property of orthogonality.

\[
\langle u^{qH}, h_n^{\alpha, \beta} h_m^{\alpha, \beta} \rangle = d_n^2 \delta_{n,m}.
\]

- Distributional equation:

\[
\mathcal{D}_q(q^\alpha (q^{\beta+1} + x - q^{-N}) u^{qH}) = h_1^{\alpha, \beta}(x; N; q) u^{qH}.
\]

- Integral representation with some boundary condition:

\[
\langle u^{qH}, P \rangle = \sum_{x=0}^N P(x) \frac{(q^{\alpha+1}, q^{-N}; q)_x}{(q, q^{-\beta-N}; q)_x} q^{-(\alpha+\beta)x}.
\]
Basic properties

- Basic hypergeometric function: \((n = 1, 2, \ldots, N)\)

\[h_{n}^{\alpha, \beta}(x; N; q) = \frac{(q^{-N}, q^{\alpha+1}; q)_{n}}{(q^{\alpha+\beta+n+1}; q)_{n}} \, {}_{3}\phi_{2} \left(\begin{array}{c} q^{-n}, q^{\alpha+\beta+n+1}, x \\ q^{-N}, q^{\alpha+1} \end{array} \right| q; q \right). \]

- Property of orthogonality.

\[\langle u^{qH}, h_{n}^{\alpha, \beta} h_{m}^{\alpha, \beta} \rangle = d_{n}^{2} \delta_{n,m}. \]

- Distributional equation:

\[D_{q}(q^{\alpha}(q^{\beta+1+x} - q^{-N})u^{qH}) = h_{1}^{\alpha, \beta}(x; N; q)u^{qH}. \]

- Integral representation with some boundary condition:

\[\langle u^{qH}, P \rangle = \sum_{x=0}^{N} P(x) \frac{(q^{\alpha+1}, q^{-N}; q)_{x}}{(q, q^{-\beta-N}; q)_{x}} q^{-(\alpha+\beta)x}. \]
Basic properties

- Basic hypergeometric function: \(n = 1, 2, \ldots, N \)

\[
h_n^{\alpha, \beta}(x; N; q) = \frac{(q^{-N}, q^{\alpha+1}; q)_n}{(q^{\alpha+\beta+n+1}; q)_n} \, _3\phi_2 \left(\begin{array}{c} q^{-n}, q^{\alpha+\beta+n+1}, x \\ q^{-N}, q^{\alpha+1} \end{array} \bigg| q; q \right).
\]

- Property of orthogonality.

\[
\langle u^{qH}, h_n^{\alpha, \beta} h_m^{\alpha, \beta} \rangle = d_n^2 \delta_{n,m}.
\]

- Distributional equation:

\[
D_q(q^{\alpha} (q^{\beta+1+x} - q^{-N}) u^{qH}) = h_1^{\alpha, \beta}(x; N; q) u^{qH}.
\]

- Integral representation with some boundary condition:

\[
\langle u^{qH}, P \rangle = \sum_{x=0}^{N} P(x) \frac{(q^{\alpha+1}, q^{-N}; q)_x}{(q, q^{-\beta-N}; q)_x} q^{-(\alpha+\beta)x}.
\]
The big q-Jacobi

- Basic Hypergeometric series:
 \[P_n(x; a, b, c; q) = \frac{(q^{a+1}, q^{c+1}; q)_n}{(q^{a+b+n+1}; q)_n} \frac{\phi_2}{3}(q^{-n}, q^{a+b+n+1}; x \mid q; q). \]

- Property of orthogonality: \(\langle u^{BqJ}, P_n P_m \rangle = d_n^2 \delta_{n,m}. \)

- Distributional equation:
 \[\frac{\Delta}{\Delta x} ((x - aq)(x - cq)u^{BqJ}) = P_1(x; a, b, c; q)u^{BqJ}. \]

- Integral representation with some boundary condition:
 \[\langle u^{BqJ}, P \rangle = \int_{cq}^{aq} P(x) \frac{(q^{-a}x, q^{-c}x; q)_{\infty}}{(x, q^{b-c}x; q)_{\infty}} d_q x. \]
The big q-Jacobi

- **Basic Hypergeometric series:**
 $$P_n(x; a, b, c; q) = \frac{(q^{a+1}, q^{c+1}; q)_n}{(q^{a+b+n+1}; q)_n} {_3\phi_2} \left(\begin{array}{c} q^{-n}, q^{a+b+n+1}, x \\ q^{a+1}, q^{c+1} \end{array} \right| q; q \right).$$

- **Property of orthogonality:** $\langle u^{BqJ}, P_n P_m \rangle = d^2_n \delta_{n,m}$.

- **Distributional equation:**
 $$\frac{\Delta}{\Delta x} ((x - aq)(x - cq)u^{BqJ}) = P_1(x; a, b, c; q)u^{BqJ}.$$

- **Integral representation with some boundary condition:**
 $$\langle u^{BqJ}, P \rangle = \int_{cq}^{aq} P(x) \frac{(q^{-a}x, q^{-c}x; q)_{\infty}}{(x, q^{b-c}x; q)_{\infty}} d_q x.$$
The big q-Jacobi

- Basic Hypergeometric series:

$$P_n(x; a, b, c; q) = \frac{(q^{a+1}, q^{c+1}; q)_n}{(q^{a+b+n+1}; q)_n} 3\phi_2 \left(\begin{array}{c} q^{-n}, q^{a+b+n+1}, x \\ q^{a+1}, q^{c+1} \end{array} \right| q; q \right).$$

- Property of orthogonality: $\langle u^{BqJ}, P_n P_m \rangle = d_n^2 \delta_{n,m}$.

- Distributional equation:

$$\frac{\Delta}{\Delta x} ((x - aq)(x - cq)u^{BqJ}) = P_1(x; a, b, c; q)u^{BqJ}.$$

- Integral representation with some boundary condition:

$$\langle u^{BqJ}, P \rangle = \int_{cq}^{aq} P(x) \frac{(q^{-a} x, q^{-c} x; q)_\infty}{(x, q^{b-c} x; q)_\infty} d_q x.$$
The big q-Jacobi

- Basic Hypergeometric series:

$$P_n(x; a, b, c; q) = \frac{(q^{a+1}, q^{c+1}; q)_n}{(q^{a+b+n+1}; q)_n} 3\phi_2 \left(\begin{array}{c} q^{-n}, q^{a+b+n+1}, x \\ q^{a+1}, q^{c+1} \end{array} \bigg| q; q \right).$$

- Property of orthogonality: $\langle u^{BqJ}, P_n P_m \rangle = d_n^2 \delta_{n,m}$.

- Distributional equation:

$$\frac{\Delta}{\Delta x}((x - aq)(x - cq)u^{BqJ}) = P_1(x; a, b, c; q) u^{BqJ}.$$

- Integral representation with some boundary condition:

$$\langle u^{BqJ}, P \rangle = \int_{cq}^{aq} P(x) \frac{(q^{-a} x, q^{-c} x; q)_{\infty}}{(x, q^{b-c} x; q)_{\infty}} d_q x.$$

Roberto Costas

Extensions of Δ-COP beyond the orthogonality
The limit relation $BqJ-qH$

- The Basic hypergeometric series, re-written:
 \[
 h_n^{\alpha, \beta}(x; N; q) = \frac{(q^{\alpha+1}; q)_n}{(q^{\alpha+\beta+n+1}; q)_n} \sum_{k=0}^{n} \frac{(q^{-n}, q^{\alpha+\beta+n+1}, q^{-x}; q)_k (q^{-N+k}; q)_{n-k}}{(q^{\alpha+1}, q; q)_k} q^k.
 \]

- The key...the following algebraic relation:
 \[
 \frac{(q^{i+1}; q)_{n-N-1-j}(q^{-n}; q)_{N+1+j}}{(q; q)_{N+1+j}} = \frac{(q; q)_{n-N-1}(q^{-n}; q)_{N+1}(q^{-n+N+1}; q)_j}{(q; q)_{N+1}(q^{N+2}, q; q)_j}.
 \]

- The limit relation:
 \[
 h_n^{\alpha, \beta}(x; N; q) = \lim_{\varepsilon \to 0} P_n(x; \alpha, \beta, -N - 1 + \varepsilon; q).
 \]
The limit relation BqJ-qH

- The Basic hypergeometric series, re-written:

$$h_{\alpha,\beta}^n(x; N; q) = \frac{(q^{\alpha+1}; q)_n}{(q^{\alpha+\beta+n+1}; q)_n} \sum_{k=0}^{n} \frac{\left(q^{-n}, q^{\alpha+\beta+n+1}, q^{-x}; q\right)_k(q^{-N+k}; q)_{n-k}}{(q^{\alpha+1}, q; q)_k} q^k.$$

- The key...the following algebraic relation:

$$\frac{(q^{i+1}; q)_{n-N-1-j}(q^{-n}; q)_{N+1+j}}{(q;q)_{N+1+j}} = \frac{(q; q)_{n-N-1}(q^{-n}; q)_{N+1}(q^{-n+N+1}; q)_{j}}{(q; q)_{N+1}(q^{N+2}, q; q)_j}.$$

- The limit relation:

$$h_{\alpha,\beta}^n(x; N; q) = \lim_{\varepsilon \to 0} P_n(x; \alpha, \beta, -N - 1 + \varepsilon; q).$$
The limit relation $BqJ\cdot qH$

- The Basic hypergeometric series, re-written:

$$h_{n}^{\alpha,\beta}(x; N; q) = \frac{(q^{\alpha+1}; q)_{n}}{(q^{\alpha+\beta+n+1}; q)_{n}} \sum_{k=0}^{n} \frac{(q^{-n}, q^{\alpha+\beta+n+1}, q^{-x}; q)_{k}(q^{-N+k}; q)_{n-k}}{(q^{\alpha+1}, q; q)_{k}} q^{k}.$$

- The key...the following algebraic relation:

$$\frac{(q^{i+1}; q)_{n-N-1-j}(q^{-n}; q)_{N+1+j}}{(q; q)_{N+1+j}} = \frac{(q; q)_{n-N-1}(q^{-n}; q)_{N+1}(q^{-n+N+1}; q)_{j}}{(q; q)_{N+1}(q^{N+2}, q; q)_{j}}.$$

- The limit relation:

$$h_{n}^{\alpha,\beta}(x; N; q) = \lim_{\varepsilon \to 0} P_{n}(x; \alpha, \beta, -N - 1 + \varepsilon; q).$$
About the zeros of the extended q-Hahn polynomials

Figure: Log of the zeros of $h_{15}^{1,1}(x; 5; 0.5)$ (left) and $h_{15}^{1,1}(x; 5; \exp(0.23I))$ (right)
The factorization

For any integer k, $0 \leq k \leq n$,

$$D_{q-1}^k h_{n-k}^{\alpha,\beta} (x; N; q) = (n - k + 1|q^{-1})_k h_{n-k}^{\alpha+k,\beta+k} (x; N - k; q),$$

$$D_q^k h_{n-k}^{\alpha,\beta} (x; N; q) = (n - k + 1|q^{-1})_k h_{n-k}^{\alpha+k,\beta+k} (x - k, N - k; q),$$

The factorization:

$$h_{n}^{\alpha,\beta} (q^{-x}; N; q) = \frac{h_{N+1}^{\alpha,\beta} (q^{-x}; N; q)}{q^{(N+1)(n-N-1)}} P_{n-N-1}(-x+N+1; \alpha+N+1, \beta+N+1, N+1; q).$$
For any integer k, $0 \leq k \leq n$,

\[
D_{q-1}^k h_{n}^{\alpha,\beta}(x; N; q) = (n - k + 1|q^{-1})_k h_{n-k}^{\alpha+k,\beta+k}(x; N - k; q),
\]

\[
D_q^k h_{n}^{\alpha,\beta}(x; N; q) = (n - k + 1|q^{-1})_k h_{n-k}^{\alpha+k,\beta+k}(x - k, N - k; q),
\]

The factorization:

\[
h_{n}^{\alpha,\beta}(q^{-x}; N; q) = \frac{h_{N+1}^{\alpha,\beta}(q^{-x}; N; q)}{q^{(N+1)(n-N-1)}} P_{n-N-1}(-x+N+1; \alpha+N+1, \beta+N+1, N+1; q).
\]
A characterization Theorem for the q-Hahn polynomials

Theorem: Let N be a non-negative integer and $\alpha, \beta \in \mathbb{C}$ such that: $-\alpha, -\beta \notin \{1, 2, \ldots, N, N + 2, \ldots\}$, and $-\alpha - \beta \notin \{1, 2, \ldots, 2N + 1, 2N + 3, \ldots\}$. Then the family of Hahn polynomials is a OPS with respect to the \mathcal{D}_{q-1}-Sobolev inner product:

$$(f, g)_s = \sum_{x=0}^{N} f(x)g(x)\rho^{\alpha, \beta}(x; N; q) + \int_{\mathcal{C}} (\mathcal{D}^{N+1}_{q-1} f(z))(\mathcal{D}^{N+1}_{q-1} g(z))\omega^{\alpha, \beta}(z; N; q)dz$$

where

$$\rho^{\alpha, \beta}(x; N; q) = \frac{\Gamma_q(\alpha+1+x)\Gamma_q(x-N)}{\Gamma_q(1+x)\Gamma_q(-\beta-N+x)} q^{-(\alpha+\beta)x},$$

and \mathcal{C} is a complex contour from $-\infty i$ to ∞i which separates the certain poles*.
Some references

Some references

Finally...

Thank for your attention!!