
Extension of discrete orthogonal polynomials beyond the orthogonality Slide – 1 / 19

Extension of discrete orthogonal

polynomials beyond the orthogonality

Roberto S. Costas-Santos

Universidad de Alcalá
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1. The Favard’s theorem

2. Degenerate version of Favard’s theorem

3. An example: The Askey-Wilson Polynomials
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• Consider the polynomials (pn)n∈N0 generated by the TTRR

xpn(x) = pn+1(x) + βnpn(x) + γnpn−1(x),

with initial conditions p−1(x) ≡ 0, p0(x) = 1.

Theorem (Favard) If γn 6= 0 ∀n ∈ N then there exists a

moments functional L0 : P[x] → C so that

L0(pnpm) = rnδn,m

with rn a non-vanishing normalization factor.
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Let T1 : P[x] → P[x] be a linear operator such that

• degT1(p) = deg p− 1
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Let T1 : P[x] → P[x] be a linear operator such that

• degT1(p) = deg p− 1

• The monic polynomials pn,1 defined by

pn,1 := const.T1(pn+1) fulfill the TTRR

xpn,1(x) = pn+1,1(x) + βn,1pn,1(x) + γn,1pn−1,1(x)
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Let T1 : P[x] → P[x] be a linear operator such that

• degT1(p) = deg p− 1

• The monic polynomials pn,1 defined by

pn,1 := const.T1(pn+1) fulfill the TTRR

xpn,1(x) = pn+1,1(x) + βn,1pn,1(x) + γn,1pn−1,1(x)

Consequence: (pn,1) is orthogonal with respect to some

moments functional L1.
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• pn,k := const.Tk(pn+1,k−1) = · · · = const.T (k)(pn+k)
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• pn,k := const.Tk(pn+1,k−1) = · · · = const.T (k)(pn+k)

• xpn,k(x) = pn+1,k(x) + βn,kpn,k(x) + γn,kpn−1,k(x)
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• pn,k := const.Tk(pn+1,k−1) = · · · = const.T (k)(pn+k)

• xpn,k(x) = pn+1,k(x) + βn,kpn,k(x) + γn,kpn−1,k(x)

• Lk(pm,kpn,k) = 0 for n 6= m
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• pn,k := const.Tk(pn+1,k−1) = · · · = const.T (k)(pn+k)

• xpn,k(x) = pn+1,k(x) + βn,kpn,k(x) + γn,kpn−1,k(x)

• Lk(pm,kpn,k) = 0 for n 6= m

• So, if there exists N such that γN = 0, then the first n
such that γn,k = 0 (if it exists) verifies n < N − k.
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• pn,k := const.Tk(pn+1,k−1) = · · · = const.T (k)(pn+k)

• xpn,k(x) = pn+1,k(x) + βn,kpn,k(x) + γn,kpn−1,k(x)

• Lk(pm,kpn,k) = 0 for n 6= m

• So, if there exists N such that γN = 0, then the first n
such that γn,k = 0 (if it exists) verifies n < N − k.

Theorem: Suppose that only γN = 0, then (pn) is a MOPS

with respect to

〈f, g〉 = L0(fg) + LN (T
(N)(f)T (N)(g)).

Notice γn,N 6= 0 for all n ∈ N.
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Corollary: If Λ = {n : γn = 0}, then (pn) is a MOPS with

respect to

〈f, g〉 = L0(fg) +
∑

j∈A

Lj(T
(j)(f)T (j)(g)),

being A = {N0, N1, . . . } with

Nj+1 = Nj +min{n : γn,Nj
= 0}.
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Among all the possible choices the linear operator T can be

chosen as

• The “Associating operator”

T (p)(x) = L0

(
p(x)− p(t)

x− t

)

(L0 acts on the variable t)
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Among all the possible choices the linear operator T can be

chosen as

• The “Associating operator”

T (p)(x) = L0

(
p(x)− p(t)

x− t

)

(L0 acts on the variable t)

• If (pn) is classical, then T could be

• the derivative, or

• a difference operator.
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The monic ones are pn(x; a, b, c, d; q) ≡ pn(x)

pn+1(x) = (x− βn)pn(x)− γnpn(x),

with

γn

1 − qn
=

(1 − abqn−1)(1 − acqn−1)(1 − adqn−1)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

4(1 − abcdq2n−3)(1 − abcdq2n−2)2(1 − abcdq2n−1)

Case abcd ∈ {q−k : k ∈ N0} is not considered since the

polynomial family is not normal.

They are symmetric with respect to any rearrangement of the

parameters a, b, c, d.

{n ∈ N : γn = 0} 6= ∅ ⇐⇒ ab, ac, . . . , cd ∈ {q−k : k ∈ N0}

⇐⇒ they are q-Racah (until now considered as a finite family).
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∫

C

pn

(
z + z−1

2

)
pm

(
z + z−1

2

)
W (z)dz = dnδn,m

where

• W is analytic in C except at the poles 0,

aqk, bqk, cqk, dqk k ∈ N0 (the convergent poles)

(aq)−k, (bq)−k, (cq)−k, (dq)−k k ∈ N0 (the divergent poles)
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∫

C

pn

(
z + z−1

2

)
pm

(
z + z−1

2

)
W (z)dz = dnδn,m

where

• W is analytic in C except at the poles 0,

aqk, bqk, cqk, dqk k ∈ N0 (the convergent poles)

(aq)−k, (bq)−k, (cq)−k, (dq)−k k ∈ N0 (the divergent poles)

• C is the unit circle deformed to separate the convergent

form the divergent poles.
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• Case I: a2 = q−N+1 and

b2, c2, d2, ab, ac, ad, bc, bd, cd 6∈ {q−k : k ∈ N0}

• Case II: ab = q−N+1 and

a2, b2, c2, d2, ac, ad, bc, bd, cd 6∈ {q−k : k ∈ N0}

• Case III: ab = q−N+1, a2 = q−M with

M ∈ {0, 1, . . . , N − 2} and

b2, c2, d2, ac, ad, bc, bd, cd 6∈ {q−k : k ∈ N0}



Case I: a2 = q−M

• Outline

The Favard’s theorem

Degenerate version of

Favard’s theorem

The example:

Askey-Wilson

polynomials

• Monic Askey-Wilson

polynomials

• Orthogonality of AW

polynomials for

|q| < 1

• The 3 key cases

• Case I:

a2 = q−M

• Case II:

ab = q−N+1

• Case III

• Orthogonality of AW

polynomials for

|q| ≥ 1

• Some References

• FINALLY....

Extension of discrete orthogonal polynomials beyond the orthogonality Slide – 14 / 19

Since γn 6= 0 for all n, the orthogonality is given only by L0.
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Since γn 6= 0 for all n, the orthogonality is given only by L0.
Poles:
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Since γn 6= 0 for all n, the orthogonality is given only by L0.

L0(p; a, b, c, d) = lim
α→a

L0(p;α, b, c, d) = lim
α→a

∫

C

p(z)W (z)dz
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Since γn 6= 0 for all n, the orthogonality is given only by L0.
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Since γn 6= 0 for all n, the orthogonality is given only by L0.
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Since γn 6= 0 for all n, the orthogonality is given only by L0.

L0(p; a, b, c, d) = lim
α→a

L0(p;α, b, c, d) = lim
α→a

∫

C

p(z)W (z)dz

L0(p; a, b, c, d) =

(∫

C1

+

∫

C2

)
p(z)W (z)dz

with C1 and C2 separating the divergent poles from the

convergent ones but the double poles which stand between C1

and C2.
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In this case γN = 0 (the unique)⇒ we need L0, LN .

• L0 is a quadrature rule.

These AW polynomials are the q-Racah polynomials

L0(p) =

N−1∑

j=0

(q−N+1, ac, ad, a2; q)j

(q, a2qN , ac−1q, ad−1q; q)j

(1− a2q2j)

(cdq−N )j(1− a2)
p

(
q−j + a2q2j

2a

)
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In this case γN = 0 (the unique)⇒ we need L0, LN .

• L0 is a quadrature rule.

These AW polynomials are the q-Racah polynomials

L0(p) =

N−1∑

j=0

(q−N+1, ac, ad, a2; q)j

(q, a2qN , ac−1q, ad−1q; q)j

(1− a2q2j)

(cdq−N )j(1− a2)
p

(
q−j + a2q2j

2a

)

• T = Dq the Hahn’s operator

Dq(f)(z)
def
=





f(z)− f(qz)

(1− q)z
, z 6= 0 ∧ q 6= 1,

f ′(z), z = 0 ∨ q = 1,

DNpn(x; a, b, c, d; q) = const.pn−N (x; aqN/2, bqN/2, cqN/2, dqN/2; q)
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In this case γN = 0 (the unique)⇒ we need L0, LN .

• L0 is a quadrature rule.

These AW polynomials are the q-Racah polynomials

L0(p) =

N−1∑

j=0

(q−N+1, ac, ad, a2; q)j

(q, a2qN , ac−1q, ad−1q; q)j

(1− a2q2j)

(cdq−N )j(1− a2)
p

(
q−j + a2q2j

2a

)

• T = Dq the Hahn’s operator

Dq(f)(z)
def
=





f(z)− f(qz)

(1− q)z
, z 6= 0 ∧ q 6= 1,

f ′(z), z = 0 ∨ q = 1,

DNpn(x; a, b, c, d; q) = const.pn−N (x; aqN/2, bqN/2, cqN/2, dqN/2; q)

• LN(p; a, b, c, d) = L0(p; aq
N/2, bqN/2, cqN/2, dqN/2)
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ab = q−N+1 and a2 = q−M , with M ∈ {0, . . . , N − 2} with

only γN = 0⇒ we need L0, LN .
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ab = q−N+1 and a2 = q−M , with M ∈ {0, . . . , N − 2} with

only γN = 0⇒ we need L0, LN .

Orthogonality in this case whole be the same that in case II

L̂0(p) =

N−1∑

j=0

(q−N+1, ac, ad, a2; q)j

(q, a2qN , ac−1q, ad−1q; q)j

(1− a2q2j)

(cdq−N )j(1− a2)
p

(
q−j + a2q2j

2a

)

but L̂0 ≡ 0!.
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ab = q−N+1 and a2 = q−M , with M ∈ {0, . . . , N − 2} with

only γN = 0⇒ we need L0, LN .

Orthogonality in this case whole be the same that in case II

L̂0(p) =

N−1∑

j=0

(q−N+1, ac, ad, a2; q)j

(q, a2qN , ac−1q, ad−1q; q)j

(1− a2q2j)

(cdq−N )j(1− a2)
p

(
q−j + a2q2j

2a

)

but L̂0 ≡ 0!.

The good one:

L0(p) = lim
α→a

L̂0(p;α, b, c, d)

α− a
=

dL̂0(p;α, b, c, d)

dα

∣∣∣
α=a

.
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ab = q−N+1 and a2 = q−M , with M ∈ {0, . . . , N − 2} with

only γN = 0⇒ we need L0, LN .

Orthogonality in this case whole be the same that in case II

L̂0(p) =

N−1∑

j=0

(q−N+1, ac, ad, a2; q)j

(q, a2qN , ac−1q, ad−1q; q)j

(1− a2q2j)

(cdq−N )j(1− a2)
p

(
q−j + a2q2j

2a

)

but L̂0 ≡ 0!.

The good one:

L0(p) = lim
α→a

L̂0(p;α, b, c, d)

α− a
=

dL̂0(p;α, b, c, d)

dα

∣∣∣
α=a

.

The result is a quadrature rule with simple and double nodes
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• |q| > 1.

pn(x; a, b, c, d|q
−1) = pn(x; a

−1, b−1, c−1, d−1|q)
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• |q| > 1.

pn(x; a, b, c, d|q
−1) = pn(x; a

−1, b−1, c−1, d−1|q)

• q = exp(2Mπ/NI). In this case γjN = 0, j ∈ N.

• Spiridonov and Zhedanov found L0
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• |q| > 1.

pn(x; a, b, c, d|q
−1) = pn(x; a

−1, b−1, c−1, d−1|q)

• q = exp(2Mπ/NI). In this case γjN = 0, j ∈ N.

• Spiridonov and Zhedanov found L0

• For n > N

D
Npn(x; a, b, c, d|q) = pn−N((−1)Mx; a, b, c, d|q)
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• |q| > 1.

pn(x; a, b, c, d|q
−1) = pn(x; a

−1, b−1, c−1, d−1|q)

• q = exp(2Mπ/NI). In this case γjN = 0, j ∈ N.

• Spiridonov and Zhedanov found L0

• For n > N

D
Npn(x; a, b, c, d|q) = pn−N((−1)Mx; a, b, c, d|q)

• Lj(p(�)) = L0(p((−1)M �))



Orthogonality of AW polynomials for |q| ≥ 1

• Outline

The Favard’s theorem

Degenerate version of

Favard’s theorem

The example:

Askey-Wilson

polynomials

• Monic Askey-Wilson

polynomials

• Orthogonality of AW

polynomials for

|q| < 1

• The 3 key cases

• Case I:

a2 = q−M

• Case II:

ab = q−N+1

• Case III

• Orthogonality of AW

polynomials for

|q| ≥ 1

• Some References

• FINALLY....

Extension of discrete orthogonal polynomials beyond the orthogonality Slide – 17 / 19

• |q| > 1.

pn(x; a, b, c, d|q
−1) = pn(x; a

−1, b−1, c−1, d−1|q)

• q = exp(2Mπ/NI). In this case γjN = 0, j ∈ N.

• Spiridonov and Zhedanov found L0

• For n > N

D
Npn(x; a, b, c, d|q) = pn−N((−1)Mx; a, b, c, d|q)

• Lj(p(�)) = L0(p((−1)M �))

• For the rest of the values of q the result keeps UNKNOWN.
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THANK YOU

FOR YOUR ATTENTION !!
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