The Classical Basic Hypergeometric Orthogonal Polynomials

Conociendo mejor a los q-polinomios

Roberto S. Costas Santos

Universidad de Alcalá

V encuentro iberoamericano de polinomios ortogonales y sus aplicaciones 8 de Junio, 2015, Mexico

JOSÉ CARLOS SOARES PETRONILHO

Polinómios Ortogonais e Funcionais Semiclássicas

Universidade de Coimbra

Faculdade de Ciências e Tecnologia

Departamento de Matemática

1993

Indeterminate Moment Problems within the Askey-scheme

Jacob Stordal Christiansen

Ph.D. thesis

Defence:

October 8, 2004

Thesis advisor:

Christian Berg, University of Copenhagen, Denmark

 $Evaluating\ committee:$

Henrik Schlichtkrull, University of Copenhagen, Denmark Erik Koelink, Technical University Delft, the Netherlands Henrik Laurberg Pedersen, The Royal Veterinary and Agricultural University, Denmark

Institute for Mathematical Sciences \cdot University of Copenhagen \cdot 2004

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Extensions of discrete classical orthogonal polynomials beyond the orthogonality

R.S. Costas-Santos a,*, J.F. Sánchez-Lara b

ARTICLE INFO

Article history: Received 5 November 2007

MSC:

33C45

42C05

34B24

ABSTRACT

It is well-known that the family of Hahn polynomials $\{h_n^{\alpha,\beta}(x;N)\}_{n\geq 0}$ is orthogonal with respect to a certain weight function up to degree N. In this paper we prove, by using the three-term recurrence relation which this family satisfies, that the Hahn polynomials can be characterized by a Δ -Sobolev orthogonality for every n and present a factorization for Hahn polynomials for a degree higher than N.

We also present analogous results for dual Hahn, Krawtchouk, and Racah polynomials and give the limit relations among them for all $n \in \mathbb{N}_0$. Furthermore, in order to get

^a Department of Mathematics, University of California, South Hall, Room 6607 Santa Barbara, CA 93106, USA

^b Universidad Politécnica de Madrid, Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada, Avda Juan de Herrera, 4. 28040 Madrid, Spain

q-Classical Orthogonal Polynomials: A General Difference Calculus Approach

R.S. Costas-Santos · F. Marcellán

Received: 21 July 2007 / Accepted: 23 June 2009 / Published online: 4 July 2009

© Springer Science+Business Media B.V. 2009

Abstract It is well known that the classical families of orthogonal polynomials are characterized as the polynomial eigenfunctions of a second order homogeneous linear differential/difference hypergeometric operator with polynomial coefficients.

In this paper we present a study of the classical orthogonal polynomials sequences, in short classical OPS, in a more general framework by using the differential (or difference) calculus and Operator Theory. The Hahn's Theorem and a characterization theorem for the q-polynomials which belongs to the q-Askey and Hahn tableaux are proved. Finally, we illustrate our results applying them to some known families of orthogonal q-polynomials.

Theorem 4.3 Let (p_n) be an OPS with respect to $\rho(s)$ on the lattice x(s) defined in (14) and let $\sigma(s)$ be such that (19) holds. Then the following statements are equivalent:

- 1. (p_n) is q-classical.
- 2. The sequence $(\Delta^{(1)}p_n)$ is an OPS with respect to the weight function $\rho_1(s) = \sigma(s+1)\rho(s+1)$ where ρ satisfies (15).
- 3. For every integer k, the sequence $(\mathcal{R}_n(\rho_k(s), x_k(s))(1))$ is an OPS with respect to the weight function $\rho_k(s)$ where $\rho_0(s) = \rho(s)$, $\rho_k(s) = \rho_{k-1}(s+1)\sigma(s+1)$, and ρ satisfies (15).
- 4. (Second order linear difference equation): (p_n) satisfies the following second order linear difference equation of hypergeometric type

$$\sigma(s) \frac{\Delta}{\nabla x_1(s)} \frac{\nabla p_n(s)}{\nabla x(s)} + \tau(s) \frac{\Delta p_n(s)}{\Delta x(s)} + \lambda_n p_n(s) = 0, \tag{20}$$

where $\widehat{\sigma}(s) = \sigma(s) + \frac{1}{2}\tau(s)\nabla x_1(s)$ and $\tau(s)$ are polynomials on x(s) of degree at most 2 and 1, respectively, and λ_n is a constant.

5. (p_n) can be expressed in terms of the Rodrigues Operator as follows

$$p_n(s) = B_n \mathcal{R}_n(\rho(s), x(s))(1) = \frac{B_n}{\rho(s)} \frac{\nabla}{\nabla x_1(s)} \frac{\nabla}{\nabla x_2(s)} \cdots \frac{\nabla}{\nabla x_n(s)} (\rho_n(s)), \tag{21}$$

where B_n is a non zero constant.

6. (Second structure relation) There exist three sequences of complex numbers, (e_n) , (f_n) , and (g_n) , such that the following relation holds for every $n \ge 0$, with the convention $p_{-1} = 0$,

$$\mathcal{M}p_n(x(s)) = e_n \frac{\Delta p_{n+1}(s)}{\Delta x(s)} + f_n \frac{\Delta p_n(s)}{\Delta x(s)} + g_n \frac{\Delta p_{n-1}(s)}{\Delta x(s)},$$

where M is the forward arithmetic mean operator:

$$\mathcal{M}f(s) := \frac{f(s+1) + f(s)}{2},$$

 $e_n \neq 0$, $g_n \neq \gamma_n$ for all $n \geq 0$, and γ_n is the corresponding coefficient of the three-term recurrence relation [25]

$$x(s)p_n(s) = \alpha_n p_{n+1}(s) + \beta_n p_n(s) + \gamma_n p_{n-1}(s), \quad n \ge 0.$$

Theorem 4.4 *Under the hypothesis of Theorem* **4.3** *the following statements are equivalent:*

- (i) (p_n) is q-classical.
- (ii) $(\Delta^{(1)} p_{n+1})$ is a *OPS*.

AL-SALAM-CARLITZ POLYNOMIALS. A GENERAL STUDY

The lattice $\{q^k : k \in \mathbb{N}_0\} \cup \{(1+i)q^k : k \in \mathbb{N}_0\}$ with $q = 0.8 \exp(\pi i/6)$.

The Al-Salam-Carlitz polynomials $U_n^{(a)}(x;q)$ were introduced by W. A. Al-Salam and L. Carlitz in [1] as follows

(1.1)
$$U_n^{(a)}(x;q) := (-a)^n q^{\binom{n}{2}} \sum_{k=0}^n \frac{(q^{-n};q)_k (x^{-1};q)_k}{(q;q)_k} \frac{q^k x^k}{a^k}.$$

In fact, these polynomials have a Rodrigues-type formula [4, (3.24.10)]

$$(1.2) \qquad U_n^{(a)}(x;q) = \frac{a^n q^{\binom{n}{2}} (1-q)^n}{q^n \omega(x;a;q)} (\mathscr{D}_{q^{-1}})^n [\omega(x;a;q)], \qquad \omega(x;a;q) := (qx;q)_{\infty} (qx/a;q)_{\infty},$$

where the q-Pochhammer symbol is defined as follows

$$(z;q)_0 := 1, \quad (z;q)_n := \prod_{k=0}^{n-1} (1 - zq^k),$$

$$(z;q)_{\infty}:=\prod_{k=0}^{\infty}(1-zq^k),\quad |z|<1.$$

and the q-derivative operator is defined by

$$(\mathscr{D}_q f)(z) := \left\{ egin{array}{ll} \displaystyle rac{f(qz) - f(z)}{(q-1)z} & ext{if } q
eq 1 \land z
eq 0, \\ \displaystyle f'(z) & ext{if } q = 1 \lor z = 0. \end{array}
ight.$$

$$\int_{a}^{1} U_{n}^{(a)}(x;q) U_{m}^{(a)}(x;q) (qx,qx/a;q)_{\infty} d_{q}x = (-a)^{n} (1-q)(q;q)_{n} (q;q)_{\infty} (a;q)_{\infty} (q/a;q)_{\infty} q^{\binom{n}{2}} \delta_{nm},$$

where the q-Jackson integral is defined as

$$\int_0^a f(x)d_qx := a(1-q)\sum_{n=0}^\infty f(aq^n), \quad \int_a^b f(x)d_qx = \int_0^b f(x)d_qx - \int_0^a f(x)d_qx.$$

Proof. Let 0 < |q| < 1, and $a \in \mathbb{C}$, $a \neq 0, 1$. We are going to express the q-Jackson integral (2.1) as the difference of the two infinite sums and apply the identity

$$(2.2) \qquad \sum_{k=0}^{M} f(q^k)(\mathscr{D}_{q^{-1}}g)(q^k)q^k = \frac{f(q^M)g(q^M) - f(q^{-1})g(q^{-1})}{q^{-1} - 1} - \sum_{k=0}^{M} g(q^{k-1})(\mathscr{D}_{q^{-1}}f)(q^k)q^k.$$

Let $n \ge m$ then, for one side since $\omega(q^{-1}; a; q) = 0$ and using the identity [4, (14.24.9))], we get

$$\begin{split} &\sum_{k=0}^{\infty} \omega(q^k; a; q) U_m^{(a)}(q^k; q) U_n^{(a)}(q^k; q) q^k \\ &= \lim_{M \to \infty} \frac{a(1-q)}{q^{2-n}} \sum_{k=0}^{M} \mathcal{D}_{q^{-1}}[\omega(q^k; a; q) U_{n-1}^{(a)}(q^k; q)] U_m^{(a)}(q^k; q) q^k \\ &= \lim_{M \to \infty} a q^{n-1} U_m^{(a)}(q^M; q) U_{n-1}^{(a)}(q^M; q) \omega(q^M; a; q) \\ &+ a q^{n-1}(q^m-1) \sum_{k=0}^{M-1} \omega(q^k; a; q) U_{n-1}^{(a)}(q^k; q) U_{m-1}^{(a)}(q^k; q) q^k. \end{split}$$

Following an analogous process than before and since $\omega(aq^{-1};a;q)=0$ we get

$$\begin{split} &\sum_{k=0}^{\infty} \omega(aq^k;a;q) U_m^{(a)}(aq^k;q) U_n^{(a)}(aq^k;q) aq^k \\ &= \lim_{M \to \infty} \frac{U_m^{(a)}(aq^M;q) U_{n-1}^{(a)}(aq^M;q) \omega(aq^M;a;q)}{q^{-1}-1} \\ &+ \frac{a(q^m-1)}{q^{1-n}} \sum_{k=0}^{M-1} \omega(aq^k;a;q) U_{n-1}^{(a)}(aq^k;q) U_{m-1}^{(a)}(aq^k;q) aq^k. \end{split}$$

Therefore if m < n then

$$\int_{a}^{1} U_{n}^{(a)}(x;q) U_{m}^{(a)}(x;q) (qx,qx/a;q)_{\infty} d_{q}x = 0.$$

And for n = m following the same idea we have

$$\begin{split} &\int_{a}^{1} U_{n}^{(a)}(x;q) U_{n}^{(a)}(x;q) \omega(x;a;q) d_{q}x \\ &= \frac{a(q^{n}-1)}{q^{1-n}} \sum_{k=0}^{\infty} \left(\omega(q^{k};a;q) \left(U_{n-1}^{(a)}(q^{k};q) \right)^{2} q^{k} - a \omega(aq^{k};a;q) \left(U_{n-1}^{(a)}(aq^{k};q) \right)^{2} q^{k} \right) \\ &= (-a)^{n} (q;q)_{n} q^{\binom{n}{2}} \sum_{k=0}^{\infty} \left(\omega(q^{k};a;q) q^{k} - a \omega(aq^{k};a;q) q^{k} \right) \\ &= (-a)^{n} (q;q)_{n} (q;q)_{\infty} q^{\binom{n}{2}} \sum_{k=0}^{\infty} \left((q^{k+1}/a;q)_{\infty} - a(aq^{k+1};q)_{\infty} \right) \frac{q^{k}}{(q;q)_{k}} \\ &= (-a)^{n} (q;q)_{n} (q;q)_{\infty} q^{\binom{n}{2}} (a;q)_{\infty} (q/a;q)_{\infty}. \end{split}$$

Due the normality of this polynomial sequence, i.e., $\deg U_n^{(a)}(x;q)=n$ for all $n\in\mathbb{N}_0$, the uniqueness is straightforward hence the result holds.

From this result and taking into account we the squared norm for the Al-Salam-Carlitz polynomials is known we got the following consequence which we could not find any reference about it.

Corollary 2.3. Let $a, q \in \mathbb{C} \setminus \{0\}, |q| < 1$. Then

(2.3)
$$\sum_{k=0}^{\infty} \left((q^{k+1}/a; q)_{\infty} - a(aq^{k+1}; q)_{\infty} \right) \frac{q^k}{(q; q)_k} = (a; q)_{\infty} (q/a; q)_{\infty}.$$

Theorem 2.4. Let $a, q \in \mathbb{C}$, $a \neq 0, 1$, |q| > 1. Then the Al-Salam-Carlitz polynomials are the unique (up to a multiplicative constant) satisfying the property of orthogonality

$$\int_{\Gamma} U_n^{(a)}(x;q^{-1}) U_m^{(a)}(x;q^{-1}) (q^{-1}x;q^{-1})_{\infty} (q^{-1}x/a;q^{-1})_{\infty} d_{q^{-1}}x =$$

$$(2.4) \qquad (-a)^n (1-q^{-1}) (q^{-1};q^{-1})_n (q^{-1};q^{-1})_{\infty} q^{-\binom{n}{2}} (a;q^{-1})_{\infty} (q^{-1}/a;q^{-1})_{\infty} \delta_{m,n},$$

where Γ is the set of points $(aq^{-k})_{k=0}^{\infty} \cup (q^{-k})_{k=\infty}^{0}$.

