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2. The main objective is to describe three fundamental tools
that need to be handled to get rational approximations
related to certain real numbers.
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Given a real number x, and two sequences of integers (ap),
(bn) such that b, # 0. an /by is a rational approximation of x
if a

1 sx when n— oco.

bn

m Dirichlet proved in 1840 that for all x irrational, there exists
infinitely many integers a, b such that

)X 9’ o U
bl = b2
m Apery in 1979 obtained recurrence relations which the

numerators and denominators rational approximations of
¢(2) and ¢(3) satisfy respectively. i
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RATIONAL APPROXIMATION

m Later, Beukers in 1979 1 and applying approximation Theory
in a short note gave a basic explanation about such
recurrence relations presented by Apery.

m In such a note it can be verified that there are two tools that
are fundamental:

* the differential equations, and

* the hypergeometric functions.




FIRST TOOL:




THE HYPERGEOMETRIC FUNCTIONS

Given two sequences {a, ...,a,} and {b,, ..., bs} the
hypergeometric series associated to these values is

Qs,...,Qr 2 @)k (ar)p 2°
E - _ -
' S< ba, ..., bs 'Z> ,;(b1)k"'(bs)k R!”

where b,, ..., bs is not a negative integer, and depending on the
the values of r and s the range of converge changes, and the
shifted factorial (a)g, or Pochhammer symbol, is defined as

(@) :=a(a+1)---(a+kR—1).




FIRST EXAMPLE: THE GAUSS FUNCTION

The Gauss function

The sequence fp(z) = 2F1(—n, b; c; 2), with ¢ # o, fulfills the
difference equation:

(c+ n)fnta(2) = (¢ +2n — bz — nz)fn(z) + n(z — 1)fn—1(2),
with initial conditions fo(z) = 1and f;(z) = 1 — bz/c.

The Zeilberger’s algorthm let us to obtain the difference
equation certain hypergeometric series satisfies [s].



SECOND TOOL:




DIFFERENCE EQUATIONS

m The homogeneous are of the form:

Po(N)un + p1(N)Unya(n) + -+ + pg(N)upg = 0

where deg py, is a polynomial k = 0,1, ..., d.




DIFFERENCE EQUATIONS

m The homogeneous are of the form:

Po(N)un + p1(N)Unya(n) + -+ + pg(N)upg = 0

where deg py, is a polynomial k = 0,1, ..., d.

m In the cases we are going to consider (the one we can find in
the literature related with such rational approximations) we
have

pa(n) =P(n+1)Dn,  po(n) = P(n)Np
where deg pr(n) is constant, i.e. degpg(n) =T,k =0,1,...,d.
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m Let us consider the sequence

= (—R)n(R + N +2)n
Rn = g(zk +n+2) (R + )

m Expanding this sequence we obtain

Rn = an — bn((3)
m Using the Zeilberger algorithm we get that R, satisfies
NUp_q + (2n + 1) (170% + 170 + 5) Up + (N +1)°Un4q = O,
with certain initial conditions.

m In fact, a, and b, satisfy the same difference equation.
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m If we consider S, = (—‘l)”(n!)2 Rn, then S, fulfills

n3un_1+ (2n +1) (17n* +17n +5) Up + (N + 1)3Up4q = O

m This one is the second order difference equation:
Po(N — 1) Un_1 + p1(N)Un + po(N)Unis =0
Po(nN)AVuU, — Vpo(n)Vun + (Po(n — 1) + pa(n) + po(n))us = 0
m The roots of the characteristic polynomial A2 + 34\ +1=0

are
A~ —0.03 > ~ —33.97

n 2 2
S e
kR

m Moreover




In such example we have
Rn = an — bn((3).
By the Poincare’s theorem [4] we have

R _(_1)n Sn ~ (*)‘1)'1
T (m)?
(=22)"

()’

but the numbers a, y b, are not integers, but rational numbers.

an,bp =

Rn
bn

an

= ‘C(3) ~ b,




Numerical experiment

n an bn |Rn|
1 12 10 0.02056903160
1
2 % ? 0.00007696532519
62531 1445
= —1.579661956 * 10~/
3 64% 18 579661956 *
11424695 33001
— e 2.036802131 %« 10~ '°
N 2 o
35441662103 163801
—1.7992938 10— 1
5 252200%00 81%40 799293675 *
6 RO S 1156012181 x 10~ 1°
207360000 10368
063652602684713 | 116861473
—5.6420 10—2°
Y/ 1742597600000 2540160 SO
19091 2721 1
8 431909158875427 654716497 2162249452 % 10~ 23
1784370954240000 | 32514048




Discrete Wronskian
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m Let us consider the expression:

Rn = ao(n) + a:(n)m + ax(n)n2 + as(n)ns,
where m,, n, and n; are real numbers.

B Let us introduce the discrete Wronskian in such a case as

ai(n)  an)  ak(n)
Wn(i,j: k) = |ai(n + 1) a(n+1) ap(n +1)},
a;(n+2) aj(n+2) ag(n+2)
where i #j # k.

m Then

Rn a.(n) ax(n)
Rhta aqy(n+1) ax(n+1)
Rota ai(n+2) ax(n+2)

=Wn(0,1,2) + Wn(3,1,2)1;

:Wn(O, 172) + Wn(1, 273)n3




In

fact, we are going to define as well

Rn a.(n) ax(n)
Wn(R,1,2) = [Rptq ai(n+1) ax(n+1)|.
Rniz ai(n+2) ax(n—+2)

m Let us assume [3 equations, 4 polynomials]

Po(n)as(n) + ps(n)ai(n + 1) + p2(n)as(n + 2) + p3(n)as(n + 3)

Po
Po
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In fact, we are going to define as well

Rn a.(n) ax(n)
Wn(R,1,2) = [Rptq ai(n+1) ax(n+1)|.
Rniz ai(n+2) ax(n—+2)

m Let us assume [3 equations, 4 polynomials]

Po(n)as(n) + ps(n)ai(n + 1) + p2(n)as(n + 2) + p3(n)as(n + 3)
Po(n)az(n) + p1(n)az(n + 1) + p2(n)az(n +2) + p3(n)ax(n +3) =
Po(n)as(n) + ps(n)as(n + 1) + p2(n)as(n + 2) + p3(n)as(n + 3) =

m If we work with such expressions in order to eliminate p,(n)

we obtain
022 i 10 13) 20113 -
Po(MWn(2,3) — p2(n)Wn+4(2,3) + p3(n) ZEEZ i 33 Zi?rqw i 3 -

o
o,
o



m If we eliminate p,(n) and after some straightforward
calculations we have

p1(n)Wn(172a3) + p3(n)Wn+1(17273) = 0.




SECOND CASE WITH WRONSKIANS
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SECOND CASE WITH WRONSKIANS

m Let us assume [2 equations, 4 polynomials]
Po(n)as(n) + pa(n)ai(n + 1) + p2(n)as(n +2) + ps(n)as(n+3) = o,
Po(n)az(n) + pa(n)ax(n + 1) + pa(n)az(n +2) + ps(n)az(n +3) = o.

m If we work with such expressions in order to eliminate p,(n)
we obtain

a;(n+3) ax(n+3)|

Po(MWn(1,2) — p2(n)Wn4(1,2) + p3(n) a(n+1) a(n+1)| =

m Taking into account the original recurrence by taking
n — n+ 1, we multiply the previous expression by po(n + 1)
and after some simplifications we have

Po(n)po(n + 1)Ws(1,2) — p2(n)po(n + 1)Wn14(1,2)
+p3(n)pa(n + 1)Wn42(1,2) — p3(n)ps(n + 1)Wn43(1,2) = 0.
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LATEST COMMENTS

m Ifp;(n) = \n" +O(n"")i=0,1,..,3and
Po(n)us(n) + pa(n)us(n + 1) + p2(n)us(n +2) + p3(nus(n +3) = 0
Po(M)Po(N + 1)Wn(1,2) — pa(M)Po(n + 1)Wa (1, 2)
+p3(M)pa(n + 1)Wni2(1,2) — p3(n)p3(n + 1)Wn3(1,2) = ©
m From the first expression we have
oAb AR AR A R SE = @

whose roots are r4, 1, 3.
m From the second equation we have

— A — % )&
>\3+)\2<)\3X>+>\1<)\3X> +A0<A3X> =0
(o] o] (o}

whose roots are rir,, 13, rafs.
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