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Goal of this talk

1. First of all, this talk is in honor of Richard (Dick) Askey.

2. The main objective is to describe three fundamental tools
that need to be handled to get rational approximations
related to certain real numbers.
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Motivation:
Rational approximation of
real numbers



Rational approximation

Given a real number x, and two sequences of integers (an),
(bn) such that bn 6= 0. an/bn is a rational approximation of x
if an

bn
→ x when n→∞.

Dirichlet proved in 1840 that for all x irrational, there exists
infinitely many integers a, b such that∣∣∣x − a

b

∣∣∣ < 1
b2 .

Apery in 1979 obtained recurrence relations which the
numerators and denominators rational approximations of
ζ(2) and ζ(3) satisfy respectively. [1]
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Rational approximation

Later, Beukers in 1979 [2] and applying approximation Theory
in a short note gave a basic explanation about such
recurrence relations presented by Apery.

In such a note it can be verified that there are two tools that
are fundamental:

* the di�erential equations, and

* the hypergeometric functions.
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First tool:
The hypergeometric func-
tions



The hypergeometric functions

Given two sequences {a1, ...,ar} and {b1, ...,bs} the
hypergeometric series associated to these values is

rFs
(
a1, ...,ar
b1, ...,bs

; z
)

=
∞∑
k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk
k!
,

where b1, ...,bs is not a negative integer, and depending on the
the values of r and s the range of converge changes, and the
shi�ed factorial (a)k, or Pochhammer symbol, is defined as

(a)k := a(a+ 1) · · · (a+ k− 1).
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First example: The Gauss function

The Gauss function
The sequence fn(z) = 2F1(−n,b; c; z), with c 6= 0, fulfills the
di�erence equation:

(c+ n)fn+1(z) = (c+ 2n− bz− nz)fn(z) + n(z− 1)fn−1(z),

with initial conditions f0(z) = 1 and f1(z) = 1− bz/c.

The Zeilberger’s algorthm let us to obtain the di�erence
equation certain hypergeometric series satisfies [5].
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Second tool:
Difference equations



Difference equations [3]

The homogeneous are of the form:

p0(n)un + p1(n)un+1(n) + · · ·+ pd(n)un+d = 0

where deg pk is a polynomial k = 0, 1, ...,d.

In the cases we are going to consider (the one we can find in
the literature related with such rational approximations) we
have

pd(n) = P(n+ 1)Dn, p0(n) = P(n)Nn
where deg pk(n) is constant, i.e. deg pk(n) = T, k = 0, 1, ...,d.
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Second example: Rational approximation of ζ(3)

Let us consider the sequence

Rn =
∞∑
k=n

(2k+ n+ 2)
(−k)n(k+ n+ 2)n

((k+ 1)n+1)4

Expanding this sequence we obtain

Rn = an − bnζ(3)

Using the Zeilberger algorithm we get that Rn satisfies

nun−1 + (2n+ 1)
(
17n2 + 17n+ 5

)
un + (n+ 1)5un+1 = 0,

with certain initial conditions.

In fact, an and bn satisfy the same di�erence equation.
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If we consider Sn = (−1)n
(
n!
)2 Rn, then Sn fulfills

n3 un−1 + (2n+ 1)
(
17n2 + 17n+ 5

)
un + (n+ 1)3un+1 = 0

This one is the second order di�erence equation:

p0(n− 1)un−1 + p1(n)un + p0(n)un+1 = 0

p0(n)∆∇un−∇p0(n)∇un +
(
p0(n− 1) + p1(n) + p0(n)

)
un = 0

The roots of the characteristic polynomial λ2 + 34λ+ 1 = 0
are

λ1 ≈ −0.03 λ2 ≈ −33.97
Moreover

bn =
n∑

k=0

(
n
k

)2(n+ k
k

)2
, an =??

8 15



If we consider Sn = (−1)n
(
n!
)2 Rn, then Sn fulfills

n3 un−1 + (2n+ 1)
(
17n2 + 17n+ 5

)
un + (n+ 1)3un+1 = 0

This one is the second order di�erence equation:

p0(n− 1)un−1 + p1(n)un + p0(n)un+1 = 0

p0(n)∆∇un−∇p0(n)∇un +
(
p0(n− 1) + p1(n) + p0(n)

)
un = 0

The roots of the characteristic polynomial λ2 + 34λ+ 1 = 0
are

λ1 ≈ −0.03 λ2 ≈ −33.97
Moreover

bn =
n∑

k=0

(
n
k

)2(n+ k
k

)2
, an =??

8 15



If we consider Sn = (−1)n
(
n!
)2 Rn, then Sn fulfills

n3 un−1 + (2n+ 1)
(
17n2 + 17n+ 5

)
un + (n+ 1)3un+1 = 0

This one is the second order di�erence equation:

p0(n− 1)un−1 + p1(n)un + p0(n)un+1 = 0

p0(n)∆∇un−∇p0(n)∇un +
(
p0(n− 1) + p1(n) + p0(n)

)
un = 0

The roots of the characteristic polynomial λ2 + 34λ+ 1 = 0
are

λ1 ≈ −0.03 λ2 ≈ −33.97

Moreover

bn =
n∑

k=0

(
n
k

)2(n+ k
k

)2
, an =??

8 15



If we consider Sn = (−1)n
(
n!
)2 Rn, then Sn fulfills

n3 un−1 + (2n+ 1)
(
17n2 + 17n+ 5

)
un + (n+ 1)3un+1 = 0

This one is the second order di�erence equation:

p0(n− 1)un−1 + p1(n)un + p0(n)un+1 = 0

p0(n)∆∇un−∇p0(n)∇un +
(
p0(n− 1) + p1(n) + p0(n)

)
un = 0

The roots of the characteristic polynomial λ2 + 34λ+ 1 = 0
are

λ1 ≈ −0.03 λ2 ≈ −33.97
Moreover

bn =
n∑

k=0

(
n
k

)2(n+ k
k

)2
, an =??

8 15



In such example we have

Rn = an − bnζ(3).

By the Poincare’s theorem [4] we have

Rn = (−1)n
Sn(
n!
)2 ≈

(−λ1)n(
n!
)2 → 0,

an,bn ≈
(−λ2)n(
n!
)2

but the numbers an y bn are not integers, but rational numbers.∣∣∣∣Rnbn
∣∣∣∣ =

∣∣∣∣ζ(3)− an
bn

∣∣∣∣ .
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Numerical experiment

n an bn |Rn|
1 12 10 0.02056903160

2 351
8

73
2 0.00007696532519

3 62531
648

1445
18 −1.579661956 ∗ 10−7

4 11424695
82944

33001
288 2.036802131 ∗ 10−10

5 35441662103
259200000

163801
1440 −1.799293875 ∗ 10−13

6 20637706271
207360000

858433
10368 1.156012181 ∗ 10−16

7 963652602684713
17425497600000

116861473
2540160 −5.642055399 ∗ 10−20

8 43190915887542721
1784370954240000

654716497
32514048 2.162249452 ∗ 10−23
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Third tool:
Discrete Wronskian



Firs relations with Wronskians

Let us consider the expression:
Rn = a0(n) + a1(n)η1 + a2(n)η2 + a3(n)η3,

where η1, η2 and η3 are real numbers.

Let us introduce the discrete Wronskian in such a case as

Wn(i, j, k) =

∣∣∣∣∣∣
ai(n) aj(n) ak(n)

ai(n+ 1) aj(n+ 1) ak(n+ 1)
ai(n+ 2) aj(n+ 2) ak(n+ 2)

∣∣∣∣∣∣ ,
where i 6= j 6= k.

Then∣∣∣∣∣∣
Rn a1(n) a2(n)
Rn+1 a1(n+ 1) a2(n+ 1)
Rn+2 a1(n+ 2) a2(n+ 2)

∣∣∣∣∣∣ =Wn(0, 1, 2) +Wn(3, 1, 2)η3

=Wn(0, 1, 2) +Wn(1, 2, 3)η3.
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In fact, we are going to define as well

Wn(R, 1, 2) =

∣∣∣∣∣∣
Rn a1(n) a2(n)
Rn+1 a1(n+ 1) a2(n+ 1)
Rn+2 a1(n+ 2) a2(n+ 2)

∣∣∣∣∣∣ .
Let us assume [3 equations, 4 polynomials]

p0(n)a1(n) + p1(n)a1(n+ 1) + p2(n)a1(n+ 2) + p3(n)a1(n+ 3) = 0,
p0(n)a2(n) + p1(n)a2(n+ 1) + p2(n)a2(n+ 2) + p3(n)a2(n+ 3) = 0,
p0(n)a3(n) + p1(n)a3(n+ 1) + p2(n)a3(n+ 2) + p3(n)a3(n+ 3) = 0.

If we work with such expressions in order to eliminate p1(n)
we obtain

p0(n)Wn(1, 2)− p2(n)Wn+1(1, 2) + p3(n)

∣∣∣∣a1(n+ 3) a2(n+ 3)
a1(n+ 1) a2(n+ 1)

∣∣∣∣ = 0

p0(n)Wn(2, 3)− p2(n)Wn+1(2, 3) + p3(n)

∣∣∣∣a2(n+ 3) a3(n+ 3)
a2(n+ 1) a3(n+ 1)

∣∣∣∣ = 0.
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If we eliminate p2(n) and a�er some straightforward
calculations we have

p1(n)Wn(1, 2, 3) + p3(n)Wn+1(1, 2, 3) = 0.
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Second case with Wronskians

Let us assume [2 equations, 4 polynomials]

p0(n)a1(n) + p1(n)a1(n+ 1) + p2(n)a1(n+ 2) + p3(n)a1(n+ 3) = 0,
p0(n)a2(n) + p1(n)a2(n+ 1) + p2(n)a2(n+ 2) + p3(n)a2(n+ 3) = 0.
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p0(n)Wn(1, 2)− p2(n)Wn+1(1, 2) + p3(n)

∣∣∣∣a1(n+ 3) a2(n+ 3)
a1(n+ 1) a2(n+ 1)

∣∣∣∣ = 0.

Taking into account the original recurrence by taking
n 7→ n+ 1, we multiply the previous expression by p0(n+ 1)
and a�er some simplifications we have

p0(n)p0(n+ 1)Wn(1, 2)− p2(n)p0(n+ 1)Wn+1(1, 2)

+p3(n)p1(n+ 1)Wn+2(1, 2)− p3(n)p3(n+ 1)Wn+3(1, 2) = 0.

14 15



Second case with Wronskians

Let us assume [2 equations, 4 polynomials]

p0(n)a1(n) + p1(n)a1(n+ 1) + p2(n)a1(n+ 2) + p3(n)a1(n+ 3) = 0,
p0(n)a2(n) + p1(n)a2(n+ 1) + p2(n)a2(n+ 2) + p3(n)a2(n+ 3) = 0.

If we work with such expressions in order to eliminate p1(n)
we obtain

p0(n)Wn(1, 2)− p2(n)Wn+1(1, 2) + p3(n)

∣∣∣∣a1(n+ 3) a2(n+ 3)
a1(n+ 1) a2(n+ 1)

∣∣∣∣ = 0.

Taking into account the original recurrence by taking
n 7→ n+ 1, we multiply the previous expression by p0(n+ 1)
and a�er some simplifications we have

p0(n)p0(n+ 1)Wn(1, 2)− p2(n)p0(n+ 1)Wn+1(1, 2)

+p3(n)p1(n+ 1)Wn+2(1, 2)− p3(n)p3(n+ 1)Wn+3(1, 2) = 0.

14 15



Second case with Wronskians

Let us assume [2 equations, 4 polynomials]

p0(n)a1(n) + p1(n)a1(n+ 1) + p2(n)a1(n+ 2) + p3(n)a1(n+ 3) = 0,
p0(n)a2(n) + p1(n)a2(n+ 1) + p2(n)a2(n+ 2) + p3(n)a2(n+ 3) = 0.

If we work with such expressions in order to eliminate p1(n)
we obtain

p0(n)Wn(1, 2)− p2(n)Wn+1(1, 2) + p3(n)

∣∣∣∣a1(n+ 3) a2(n+ 3)
a1(n+ 1) a2(n+ 1)

∣∣∣∣ = 0.

Taking into account the original recurrence by taking
n 7→ n+ 1, we multiply the previous expression by p0(n+ 1)
and a�er some simplifications we have

p0(n)p0(n+ 1)Wn(1, 2)− p2(n)p0(n+ 1)Wn+1(1, 2)

+p3(n)p1(n+ 1)Wn+2(1, 2)− p3(n)p3(n+ 1)Wn+3(1, 2) = 0.

14 15



latest comments

If pi(n) = λinT +O(nT−1) i = 0, 1, ..., 3 and

p0(n)u1(n) + p1(n)u1(n+ 1) + p2(n)u1(n+ 2) + p3(n)u1(n+ 3) = 0

p0(n)p0(n+ 1)Wn(1, 2)− p2(n)p0(n+ 1)Wn+1(1, 2)

+p3(n)p1(n+ 1)Wn+2(1, 2)− p3(n)p3(n+ 1)Wn+3(1, 2) = 0

From the first expression we have

λ0 + λ1x + λ2x2 + λ3x3 = 0

whose roots are r1, r2, r3.
From the second equation we have

λ3 + λ2

(
−λ3
λ0

x
)

+ λ1

(
−λ3
λ0

x
)2

+ λ0

(
−λ3
λ0

x
)3

= 0

whose roots are r1r2, r1r3, r2r3.
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Thank you for your attention!
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