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the weight function (qx, qx/a; q)∞, more specifically, for a < 0 and 0 < q < 1 (see
khe2
[3])

∫ 1

a

U (a)
n (x; q)U (a)

m (x; q)(qx, qx/a; q)∞dqx = (−a)n(1− q)(q; q)n(q; q)∞(a; q)∞(q/a; q)∞q(
n

2)δnm,

where the q-Jackson integral is defined as

∫ a

0
f(x)dqx := a(1− q)

∞
∑

n=0

f(aqn),

∫ b

a

f(x)dqx =

∫ b

0
f(x)dqx−

∫ a

0
f(x)dqx.

Taking into account the previous orthogonality relation it is a direct result that if a and q are
classical, all their zeros are simple and belong to the interval [a, 1] but this is no longer valid for
general a and q. In this paper we show that for general a, q complex numbers, but excluding

some special cases, the Al-Salam-Carlitz polynomials U (a)
n (x; q) may still be characterized by

orthogonality relations. The case a < 0 and 0 < q < 1 or 1 > qa > 0 and q > 1 are classical,
and standard orthogonality on some interval on the real line takes place, being the key for
the study of many properties of Al-Salam-Carlitz polynomials I and II. Thus, our goal is to
establish orthogonality conditions for most of the remaining cases. We believe that these new
orthogonality conditions can be useful in the study of the zeros of Al-Salam-Carlitz polynomials.
For general a, q ∈ C \ {0} the zeros are not confined into a real interval but they distribute
themselves in the complex plane as we can see in the next Figure below.
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2. Orthogonality in the complex plane
⟨thm1⟩

thm1 Theorem 2.1. Let a, q ∈ C, a ̸= 0, 1, 0 < |q| < 1, the Al-Salam-Carlitz polynomials are the
unique (up to a multiplicative constant) satisfying the property of orthogonality

2:12:1 (2.1) 2:1

∫ 1

a

U (a)
n (x; q)U (a)

m (x; q)(qx; q)∞(qx/a; q)∞dqx = d2nδnm.

Remark 2.2. Notice that if 0 < |q| < 1 the lattice {qk : k ∈ N0} ∪ {aqk : k ∈ N0} is a set of
points which are located inside of a single contour that goes from 1 to 0 and then form 0 to a
though two spirals as we can see in Figure 2. Taking into account (

2:1
2.1) we need to avoid the

a = 1 case, moreover the a = 0 case since we cannot apply the Favard’s result
chi1
[1] due in such a

case this polynomials sequence fulfill the recurrence relation
kolest
[4]

U (0)
n+1(x; q) = (x− qn)U (0)

n (x; q), U (0)
0 (x; q) = 1.
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Chapter 2

The Classical Hypergeometric
Orthogonal Polynomials

Wilson Racah

cdHa cHa Hahn dHa

MP Jacobi Meixner Krawtchouk

Laguerre Charlier

Hermite

F

F F

F

Info: boring, relevant, almost squared: quadratic lattice, squared: linear lattice, Red line:
particular case, black line: limiting case, blue lines: we discovered this relation (new!), F:
blunt orthogonality.

Abbreviations:

W≡ Wilson, R≡Racah,
cdHa≡continuous dual Hahn, cHa≡continuous Hahn, Ha≡Hahn, dHa≡dual Hahn,
MP≡Meixner–Pollaczek, J≡Jacobi, M≡Meixner, K≡Krawtchouk
L≡Laguerre, C≡Charlier, He≡Hermite.
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Notation / definitions

5

4 CONTENTS

Euler’s gamma function and factorial for non-negative integers

Γ(z) :=

∫

∞

0
tz−1e−tdt, Re z > 0

Pochhammer symbol: the rising factorial in the complex plane

(a)n := (a)(a + 1) . . . (a+ n− 1), (a)0 := 1, a ∈ C

(a)n =
Γ(a+ n)

Γ(a)

Γ(n+ 1) = n! = (1)n

Generalized hypergeometric series

rFs

(

a1, . . . , ar
b1, . . . , bs

; z

)

:=
∞
∑

n=0

(a1)n . . . (ar)n
(b1)n . . . (bs)n

zn

n!
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1. The Meixner and Krawtchouk polynomials
4 CONTENTS

The Meixner polynomials

Mn(x;β, c) =
cn(β)n
(c− 1)n

2F1

(

−n,−x
β

; 1−
1

c

)

The Krawtchouk polynomials

Kn(x; p,N) = (−N)np
n
2F1

(

−n,−x
−N

;
1

p

)

These two families of polynomials are related. Indeed,

Kn(x; p,N) = Mn

(

x;−N,
p

p− 1

)

, Mn(x;β, c) = Kn

(

x;−β,
c

c− 1

)



2. The orthogonality for Meixner Polynomials
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a b s t r a c t

It is well-known that the family of Hahn polynomials {h↵,�
n (x;N)}n�0 is orthogonal with

respect to a certain weight function up to degree N . In this paper we prove, by using the
three-term recurrence relation which this family satisfies, that the Hahn polynomials can
be characterized by a �-Sobolev orthogonality for every n and present a factorization for
Hahn polynomials for a degree higher than N .

We also present analogous results for dual Hahn, Krawtchouk, and Racah polynomials
and give the limit relations among them for all n 2 N0. Furthermore, in order to get
these results for the Krawtchouk polynomials we will obtain a more general property of
orthogonality for Meixner polynomials.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade some of the classical orthogonal polynomials with non-classical parameters have been provided with
certain non-standard orthogonality. For instance, K. H. Kwon and L. L. Littlejohn, in [9], established the orthogonality of the
generalized Laguerre polynomials {L(�k)

n }n�0, k � 1, with respect to the Sobolev inner product:

hf , gi = (f (0), f 0(0), . . . , f (k�1)(0))A

0

BB@

g(0)
g 0(0)

...

g(k�1)(0)

1

CCA +
Z 1

0
f (k)(x)g(k)(x)e�xdx,

with A being a symmetric k⇥ k real matrix. In [10], the same authors showed that the Jacobi polynomials {P (�1,�1)
n }n�0, are

orthogonal with respect to the inner product

(f , g)1 = d1f (1)g(1) + d2f (�1)g(�1) +
Z 1

�1
f 0(x)g 0(x)dx,

where d1 and d2 are real numbers.

⇤ Corresponding address: Department of Mathematics, College of William and Mary, 23187 Williamsburg, VA, USA. Tel.: +1 757 903 6768; fax: +1 805
893 2385.

E-mail addresses: rscosa@gmail.com, rcostassantos@wm.edu (R.S. Costas-Santos), jlara@ual.es (J.F. Sánchez-Lara).
URL: http://www.rscosa.com (R.S. Costas-Santos).

0377-0427/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.07.055
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Proposition 9. For any �, c 2 C, c 62 [0, 1) and �� 62 N, the following property of orthogonality for the Meixner polynomials
fulfills:

Z

C
Mn(z; c, �)zm� (�z)� (� + z)(�c)zdz = 0, 0  m < n, n = 0, 1, 2, . . . (A.3)

where C is a complex contour from�1i to1i separating the increasing poles {0, 1, 2, . . .} from the decreasing poles {��, ���
1, �� � 2, . . .}.
Proof. We prove the result for c < 0, thus the general case is obtained by analytic continuation.

Let us assume that � is such that the contour C = {�1/2 + yi : y 2 R} separates the poles of � (� + z) from the poles
of � (�z), i.e., R� > 1/2, and let us take the normalized weight for the continuous Hahn polynomials (see (6))

Wt(z) = w(iz; 0, �t/c, t, �)

� (�t/c)� (t)
= � (�z)

� (�t/c � z)
� (�t/c)

� (t + z)
� (t)

� (� + z).

Notice that

lim
t!1

Wt(z) = � (�z)� (� + z)(�c)z =: W (z),

pointwise in C by using the Stirling formula

� (z) =
p
2⇡zz�

1
2 e�z(1 + o(1)), z ! 1, | arg(z)| < ⇡ .

It is known that

|� (x + iy)|  |� (x)|, 8 x, y 2 R,

hence

|Wt(z)|  |� (�z) � (� + z)| . (A.4)

Using once again induction on (A.1) and due to the exponential behavior of the right-hand side of (A.4) at the endpoints of
C , one obtains that

pn(iz; 0, �t/c, t, �)Wt(z)

is dominated by an integrable function on C . Thus, from the dominated convergence theorem

lim
t!1

Z

C
(�i)n+1pn(iz; 0, �t/c, t, �)zmWt(z)dz =

Z

C
Mn(z; �, c)zmW (z)dz.

On the other side since C also separates the poles of � (�t/c � z) from the poles of � (t + z), we get
Z

C
(�i)n+1pn+1(iz; 0, �t/c, t, �)zmWt(z) = 0.

Thus (A.3) holds for R� > 1/2.
The general case is straightforward by using that if C is a contour separating the poles and C1 = {� + yi : y 2 R}, where

� 2 (0, 1), � 6= R� , which does not separate the poles, then the integral through C and C1 differs on a finite number of
residues. ⇤

The case c > 0 cannot be considered by an integral of the form (A.3) since it diverges. However, when |c| < 1, (A.3) is
rewritten on the form (see [16, Section 5.6] for details)

1X

x=0

Mn(x; c, �)xm
� (� + x) cx

x! = 0,

which is also valid for c 2 (0, 1) and coincides with the very well-known orthogonal relations for Meixner polynomials.
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Connection relations and coefficients
4 CONTENTS

P (α)
n (x) =

n
∑

k=0

cn,k(α;β)P
(β)
k (x)

What are the cn,k? This is a problem in orthogonal polynomials. In general, one can
compute connection relations by using orthogonality

∫ b

a
P (α)
k (x)P (α)

k′ (x)w(x;α)dx = dk(α)δk,k′ .

Therefore

cn,k(α,β) =
1

dk(β)

∫ b

a
P (α)
n (x)P (β)

k (x)w(x;β)dx.

4 CONTENTS

P (α)
n (x) =

n
∑

k=0

cn,k(α;β)P
(β)
k (x)

What are the cn,k? This is a problem in orthogonal polynomials. In general, one can
compute connection relations by using orthogonality

∫ b

a
P (α)
k (x)P (α)

k′ (x)w(x;α)dx = dk(α)δk,k′ .

Therefore

cn,k(α,β) =
1

dk(β)

∫ b

a
P (α)
n (x)P (β)

k (x)w(x;β)dx.
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Generating functions
4 CONTENTS

f(x, ρ;α) =
∞
∑

n=0

cn(α)ρ
nP (α)

n (x)

Examples:

• Hermite polynomials

exp(2xρ− ρ2) =
∞
∑

n=0

1

n!
ρnHn(x)

• Gegenbauer polynomials

1

(1 + ρ2 − 2ρx)ν
=

∞
∑

n=0

ρnCν
n(x)

• Jacobi polynomials

2α+βR−1(1− ρ+ R)−α(1 + ρ+ R)−β =
∞
∑

n=0

ρnP (α,β)
n (x),

where R =
√

1 + ρ2 − 2ρx.

9



Example: The Laguerre polynomials 
4 CONTENTS

L(α)
n (x) =

n
∑

k=0

(n + α)n−k

(n− k)!

(−x)k

k!
(monic)

Generating function (Mourad’s trick)

(1− ρ)−α−1 exp

(

xρ

ρ− 1

)

=
∞
∑

n=0

ρnL(α)
n (x)

(1 − ρ)−α−1

(1 − ρ)−β−1
(1− ρ)−β−1 exp

(

xρ

ρ− 1

)

= (1 − ρ)β−α
∞
∑

n=0

ρnL(β)
n (x)

(1− ρ)−r =
∞
∑

k=0

(r)k
k!

xr−kyk =⇒ (1− ρ)β−α =
∞
∑

j=0

(α− β)j
j!

ρj

∞
∑

j=0

(α− β)j
j!

ρj
∞
∑

k=0

ρkL(β)
k (x) =

∞
∑

n=0

ρnL(α)
n (x)

j + k = n =⇒ j = n− k

∞
∑

n=0

{

Lα
n(x)−

n
∑

k=0

(α− β)n−k

(n− k)!
L(β)
k (x)

}

ρn = 0

Connection relation (1 free parameter)

L(α)
n (x) =

n
∑

k=0

cn,k(α;β)L
(β)
k (x),

where

cn,k(α;β) =
(α− β)n−k

(n− k)!

10



3a. Connection relations for Meixner polynomials

11

Maximal Meixner generalized generating functions for Meixner polynomials 3

Moreover, for most of the proofs we need the following inequalities ([2, Lemma 12]). Let j 2 N,
k, n 2 N0, z 2 C, <u > 0, w > �1, v � 0. Then

|(u)
j

| � (<u)(j � 1)!, (7)

(v)
n

n!
 (1 + n)v, (8)

(n+ w)
k

 max{1, 2w}(n+ k)!

n!
, (9)

(z + k)
n�k

 n!

k!
(1 + n)|z|. (10)

3 Connection and Connection-Type Relations

The Meixner polynomials are defined as [6, (9.10.1)]

M

n

(x;↵, c) := 2F1

✓
�n,�x

↵

; 1� 1

c

◆
. (11)

In this section we derive connection and connection-type relations for Meixner polynomials. For
the entire paper, we assume that x 2 C, n 2 N0.

The following connection relations for Meixner polynomials can be found in Gasper (1974)
[5, (5.2-5)].

Theorem 1. Let ↵,� 2 bC, c, d 2 bC0,1. Then

M

n

(x;↵, c) =
nX

k=0

✓
n

k

◆
(�)

k

(↵)
k

✓
d(1� c)

c(1� d)

◆
k

2F1

✓
�n+ k, k + �

k + ↵

;
d(1� c)

c(1� d)

◆
M

k

(x;�, d). (12)

By setting � = ↵ in (12) one obtains the following corollary.

Corollary 2. Let ↵ 2 bC, c, d 2 bC0,1. Then

M

n

(x;↵, c) =

✓
c� d

c(1� d)

◆
n

nX

k=0

✓
n

k

◆✓
d(1� c)

c� d

◆
k

M

k

(x;↵, d). (13)

Furthermore by setting d = c in (12) and using the Gauss formula [4, (15.4.20)], one obtains the
following corollary.

Corollary 3. Let ↵,� 2 bC, c 2 bC0,1. Then

M

n

(x;↵, c) =
1

(↵)
n

nX

k=0

✓
n

k

◆
(↵� �)

n�k

(�)
k

M

k

(x;�, c). (14)

Remark 1. Note that even though Theorem 1 was originally stated in [5] for ↵ > 0, c 2 (0, 1),
one can extend [5, (5.9-12)] analytically for ↵,� 2 C , �↵,�� 62 N0, c, d 2 bC0,1, since, in such a
case, one loses normality of the polynomials, i.e., degM

n

(x) < n for some n. However, formally,
Theorem 1 remains true for c = 1, and all �, d in the above domains.

By connection-type relations for orthogonal polynomials, we mean a relation where the left-
hand side is an orthogonal polynomial, and the right-hand side is given by a finite sum over
coe�cients multiplied by product of that same polynomial (with di↵erent parameters) and a gen-
eralized or multiple hypergeometric polynomial. Connection-type relations are not connection
relations because the coe�cients of the orthogonal polynomials depends on x. For connection
relations, the coe�cients of the orthgonal polynomials must not depend on x. We now derive a
connection-type relation for Meixner polynomials corresponding to the parameter c.
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✓
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Remark 1. Note that even though Theorem 1 was originally stated in [5] for ↵ > 0, c 2 (0, 1),
one can extend [5, (5.9-12)] analytically for ↵,� 2 C , �↵,�� 62 N0, c, d 2 bC0,1, since, in such a
case, one loses normality of the polynomials, i.e., degM

n

(x) < n for some n. However, formally,
Theorem 1 remains true for c = 1, and all �, d in the above domains.

By connection-type relations for orthogonal polynomials, we mean a relation where the left-
hand side is an orthogonal polynomial, and the right-hand side is given by a finite sum over
coe�cients multiplied by product of that same polynomial (with di↵erent parameters) and a gen-
eralized or multiple hypergeometric polynomial. Connection-type relations are not connection
relations because the coe�cients of the orthogonal polynomials depends on x. For connection
relations, the coe�cients of the orthgonal polynomials must not depend on x. We now derive a
connection-type relation for Meixner polynomials corresponding to the parameter c.
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Theorem 4. Let ↵ 2 bC, c, d 2 bC0,1. Then
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Proof. A generating function for Meixner polynomials is given as [6, (9.10.11)]

✓
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The above connection-type relation (15) can be derived by starting with (16), and multiplying

the left-hand side by
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After using the binomial theorem (6), the left-hand side becomes
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By collecting the terms associated with t

n, (15) follows using analytic contination in c, d, and
(2), (3) and (5). ⌅

We now derive a connection-type relation for Meixner polynomials corresponding to free
parameters ↵, and c. The theorem below is not a connection relation because the coe�cients of
the Meixner polynomials depend on x.

Theorem 5. Let ↵,� 2 bC, c, d 2 bC0,1. Then
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(17)

The function F1 is an Appell series, which are hypergeometric series in two variables and are
defined as [4, (16.13.1)]

F1

⇣
a, b, b

0
; c;x, y

⌘
:=

1X

m,n=0

(a)
m+n

(b)
m

(b
0
)
n

(c)
m+n

x

m

m!

y

n

n!
. (18)

Proof. We substitute the connection relation for the free parameter ↵ (14) with the connection-
type relation for the free parameter d (15) to obtain the result
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;
d
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M

m

(x;�, d).

If we expand the hypergeometric, switch the order of summations twice, and use (2)-(3), (5),
and (18) the result follows. ⌅
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3a. Connection relations for Krawtchouk polynomials

Maximal Meixner generalized generating functions for Meixner polynomials 5

We have just found a finite expansion of the Meixner polynomials with free parameters ↵, c in
terms of Meixner polynomials with free parameters �, d. The coe�cient of the connection-type
relation depends on x, so this is not a connection relation. We now combine generating functions
for Meixner polynomials with that connection-type relation to derive generalized generating
functions.

In the other hand, the Krawtchouk polynomials are a particular case of Meixner polynomials.
In fact, they are related in the following way:

K

n

(x; p,N) = M

n

✓
x;�N,

p

p� 1

◆
. (19)

Taking this into account, we can write them as a truncated hypergeometric series as [6, (9.11.1)]

K

n

(x; p,N) := 2F1

✓
�n,�x

�N

;
1

p

◆
. (20)

The following results can be found in [5, (5.9-10), (5.11-12)].

Theorem 6. Let M,N 2 N0, n  N  M , p, q 2 C \ {0}. Then
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k

◆
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k(�M)
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p

k(�N)
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2F1
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�n+ k, k �M

k �N

;
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p

◆
K

k

(x; q,M). (21)

Corollary 7. Let p, q 2 C \ {0}, N 2 N0, n  N . Then
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n
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✓
p� q

p

◆
n

nX
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✓
n

k

◆✓
q

p� q

◆
k

K

k

(x; q,N). (22)

Furthermore by setting d = c in (12) and using the Gauss formula [4, (15.4.20)], one obtains

Corollary 8. Let p, q 2 C \ {0}, M,N 2 N0, n  N  M . Then

K

n

(x; p,N) =
1

(�N)
n

nX

k=0

✓
n

k

◆
(M �N)

n�k

(�M)
k

K

k

(x; p,M). (23)

Remark 2. Observe that the previous results can be obtained from 11 by setting the right
values and using the relation 19.

We now combine generating functions for Krawtchouk polynomials with these connection
relations to derive generalized generating functions.

4 Generalized Generating Functions

We now derive generalized generating functions for the Meixner polynomials.

Theorem 9. Let ↵,� 2 bC, c, d 2 bC0,1, t 2 C. Then
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;
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◆
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(x;�, d)tn. (24)
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Remark 2. Observe that the previous results can be obtained from 11 by setting the right
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Proof. Using the generating function for Meixner polynomials [6, (9.10.12)]
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and (12), we obtain
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◆
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If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, switch the order of summations again, and use (2)-(3) and (5. Again, in order to
justify reversing the summation symbols it is enough to show that

1X
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|

�����

nX
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����� < 1,

where |M
k

(x,�, d)|  K1(1 + k)�2
d

�k,

a

n

=
t

n

n!
) |a

n

|  |t|n
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c
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=
n�kX
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(�1)k(�n)
s+k

(�)
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✓
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◆
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where K1 and �1 are positive constants not depending on n, then since
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n

|

�����

nX
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c
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�����  K1K2
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(1 + n)�1+�2+1

n!

����
t

c

����
n

����
1 + d� 2c

1� d

����
n

< 1,

the result holds since all these sums connected with these coe�cients converge. ⌅

The next result is a direct consequence of Theorem 9.

Theorem 10. Let ↵,� 2 bC, c 2 bC0,1, t 2 C. Then
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↵
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M

n
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We have just found a finite expansion of the Meixner polynomials with free parameter c in
terms of Meixner polynomials with free parameter d. The coe�cient of the connection-type
relation depends on x, so this is not a connection relation. We now combine Meixner generating
function [6, (9.10.12)] with that connection-type relation to derive a generalized generating
function.

Theorem 11. Let ↵ 2 bC, c, d 2 bC0,1, t 2 C. Then
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Moreover, for most of the proofs we need the following inequalities ([2, Lemma 12]). Let j 2 N,
k, n 2 N0, z 2 C, <u > 0, w > �1, v � 0. Then

|(u)
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3 Connection and Connection-Type Relations

The Meixner polynomials are defined as [6, (9.10.1)]
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In this section we derive connection and connection-type relations for Meixner polynomials. For
the entire paper, we assume that x 2 C, n 2 N0.

The following connection relations for Meixner polynomials can be found in Gasper (1974)
[5, (5.2-5)].

Theorem 1. Let ↵,� 2 bC, c, d 2 bC0,1. Then
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By setting � = ↵ in (12) one obtains the following corollary.
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Furthermore by setting d = c in (12) and using the Gauss formula [4, (15.4.20)], one obtains the
following corollary.
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Remark 1. Note that even though Theorem 1 was originally stated in [5] for ↵ > 0, c 2 (0, 1),
one can extend [5, (5.9-12)] analytically for ↵,� 2 C , �↵,�� 62 N0, c, d 2 bC0,1, since, in such a
case, one loses normality of the polynomials, i.e., degM

n

(x) < n for some n. However, formally,
Theorem 1 remains true for c = 1, and all �, d in the above domains.

By connection-type relations for orthogonal polynomials, we mean a relation where the left-
hand side is an orthogonal polynomial, and the right-hand side is given by a finite sum over
coe�cients multiplied by product of that same polynomial (with di↵erent parameters) and a gen-
eralized or multiple hypergeometric polynomial. Connection-type relations are not connection
relations because the coe�cients of the orthogonal polynomials depends on x. For connection
relations, the coe�cients of the orthgonal polynomials must not depend on x. We now derive a
connection-type relation for Meixner polynomials corresponding to the parameter c.
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Proof. Using the generating function for Meixner polynomials [6, (9.10.12)]
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If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, switch the order of summations again, and use (2)-(3) and (5. Again, in order to
justify reversing the summation symbols it is enough to show that
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the result holds since all these sums connected with these coe�cients converge. ⌅

The next result is a direct consequence of Theorem 9.
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We have just found a finite expansion of the Meixner polynomials with free parameter c in
terms of Meixner polynomials with free parameter d. The coe�cient of the connection-type
relation depends on x, so this is not a connection relation. We now combine Meixner generating
function [6, (9.10.12)] with that connection-type relation to derive a generalized generating
function.
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We have just found a finite expansion of the Meixner polynomials with free parameter c in
terms of Meixner polynomials with free parameter d. The coe�cient of the connection-type
relation depends on x, so this is not a connection relation. We now combine Meixner generating
function [6, (9.10.12)] with that connection-type relation to derive a generalized generating
function.
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The function �2 is a Humbert hypergeometric series of two variables defined as [7, p. 25]
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Proof. Using [6, (9.10.12)] and (15), we obtain
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Switch the order of the summations based on n and k, shift the n variable by a factor of k,
expand the hypergeometric, and use (2)-(3), (5), and (28). We can justify the reversing the
summation symbols since in this case
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where K3 and �3 are positive constants not depending on n, then the result holds since all these
sums connected with these coe�cients converge. ⌅

Theorem 12. Let ↵,� 2 bC, c, d 2 bC0,1, t 2 C. Then
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The function �(3)
2 is a confluent form of the Lauricella series defined as [7, p. 34]
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Proof. Using [6, (9.10.12)] and (17), we obtain

e

t

1F1

✓
�x

↵

;
t(1� c)

c

◆
=

1X

n=0

t

n

n!

(↵� �)
n

(↵)
n

nX

k=0

(�)
k

(�n)
k

k!(� � ↵� n+ 1)
k

M

k

(x;�, d)

⇥F1

✓
�n+ k,�x, x;� � ↵� n+ k + 1;

1

c

,

1

d

◆
.

(32)

Switch the order of the summations based on n and k, shift the n variable by a factor of k,expand
the Appell series, switch the order of summations two more times, and use (2)-(3), (5), and (31).
Indeed,

1X

n=0

|a
n

|

�����

nX

k=0

c

k,n

M

k

(x;�, d)

�����  K4

1X

n=0

(1 + n)�4

n!

����
t(c+ d)

cd

����
n

< 1,

where K4 and �4 are positive constants not depending on n, then the result holds since all these
sums connected with these coe�cients can be rearranged in the desired way. ⌅
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where K3 and �3 are positive constants not depending on n, then the result holds since all these
sums connected with these coe�cients converge. ⌅
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Switch the order of the summations based on n and k, shift the n variable by a factor of k,expand
the Appell series, switch the order of summations two more times, and use (2)-(3), (5), and (31).
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where K4 and �4 are positive constants not depending on n, then the result holds since all these
sums connected with these coe�cients can be rearranged in the desired way. ⌅
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We also have the connection relation with one free parameter given by (14). We now combine
this connection relation with the above referenced generating functions to obtain new generalized
generating functions for Meixner polynomials.

Theorem 13. Let |t| < 1, |t(1� c)| < |c(1� t)|, ↵,� 2 bC, � 2 C, c 2 bC0,1. Then
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Proof. Using the generating function for Meixner polynomials [6, (9.10.13)] and (14), we obtain
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If we switch the order of summations, shift the n variable by a factor of k and use (2)-(3) and
(5). Indeed, in this case

a

n

=
t

n(�)
n

n!
) |a

n

|  |t|n(1 + n)|�|.

so

1X

n=0

|a
n

|

�����

nX

k=0

c

k,n

M

k

(x;�, c)

�����  K5

1X

n=0

(1 + n)�5

����
t(1� c)

c(1� t)

����
n

,

where K5 and �5 are positive constants not depending on n. Therefore if |t| < 1 and |t(1� c)| <
|c(1 � t)| the sum converges, then the result holds since all these sums connected with these
coe�cients can be rearranged in the desired way. ⌅

Theorem 14. Let |t| < min{1, |c(1� d)|/|1 + d� 2c|}, ↵,� 2 bC, � 2 C, c 2 bC0,1. Then
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Proof. Using [6, (9.10.13)] and (12), we obtain
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If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, switch the order of summations again, and use (2)-(3) and (5), then the result holds
since all these sums connected with these coe�cients converge (it is similar to the previous proof
combined with the proof of Theorem 9) and can be rearranged in the desired way. ⌅

We have just found a finite expansion of the Meixner polynomials with free parameter c in terms
of Meixner polynomials with free parameter d. The coe�cient of the connection-type relation
depends on t, so this is not a connection relation. We now combine Meixner generating function
[6, (9.10.13)] with that connection-type relation to derive a generalized generating function.

4a. Generalizations of generating functions for Meixner polynomials 
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this connection relation with the above referenced generating functions to obtain new generalized
generating functions for Meixner polynomials.

Theorem 13. Let |t| < 1, |t(1� c)| < |c(1� t)|, ↵,� 2 bC, � 2 C, c 2 bC0,1. Then

(1� t)��

2F1

✓
�,�x

↵

;
t(1� c)

c(1� t)

◆
=

1X

n=0

(�)
n

(�)
n

(↵)
n

n!
2F1

✓
� + n,↵� �

↵+ n

; t

◆
M

n

(x;�, c)tn. (33)

Proof. Using the generating function for Meixner polynomials [6, (9.10.13)] and (14), we obtain

(1� t)��

2F1

✓
�,�x

↵

;
t(1� c)

c(1� t)

◆
=

1X

n=0

(�)
n

t

n

(↵)
n

nX

k=0

(↵� �)
n�k

(�)
k

(n� k)!k!
M

k

(x;�, c). (34)

If we switch the order of summations, shift the n variable by a factor of k and use (2)-(3) and
(5). Indeed, in this case

a

n

=
t

n(�)
n

n!
) |a

n

|  |t|n(1 + n)|�|.

so

1X

n=0

|a
n

|

�����

nX

k=0

c

k,n

M

k

(x;�, c)

�����  K5

1X

n=0

(1 + n)�5

����
t(1� c)

c(1� t)

����
n

,

where K5 and �5 are positive constants not depending on n. Therefore if |t| < 1 and |t(1� c)| <
|c(1 � t)| the sum converges, then the result holds since all these sums connected with these
coe�cients can be rearranged in the desired way. ⌅

Theorem 14. Let |t| < min{1, |c(1� d)|/|1 + d� 2c|}, ↵,� 2 bC, � 2 C, c 2 bC0,1. Then
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�,�x
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t(1� c)

c(1� t)
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1X
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(�)
n

(�)
n

(↵)
n

n!
2F1

✓
� + n,� + n

↵+ n

;
�dt(1� c)

c(1� d)(1� t)

◆

⇥
✓

d(1� c)

c(1� d)(1� t)

◆
n

M

n

(x;�, d)tn.

(35)

Proof. Using [6, (9.10.13)] and (12), we obtain

(1� t)��

2F1

✓
�,�x

↵

;
t(1� c)

c(1� t)

◆
=

1X

n=0

(�)
n

n!
t

n

nX

k=0

(�)
k

n!

k!(n� k)!(↵)
k

✓
d(1� c)

c(1� d)

◆
k

M

k

(x;�, d)

⇥2F1

✓
�n+ k,� + k

↵+ k

;
d(1� c)

c(1� d)

◆
.

(36)

If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, switch the order of summations again, and use (2)-(3) and (5), then the result holds
since all these sums connected with these coe�cients converge (it is similar to the previous proof
combined with the proof of Theorem 9) and can be rearranged in the desired way. ⌅

We have just found a finite expansion of the Meixner polynomials with free parameter c in terms
of Meixner polynomials with free parameter d. The coe�cient of the connection-type relation
depends on t, so this is not a connection relation. We now combine Meixner generating function
[6, (9.10.13)] with that connection-type relation to derive a generalized generating function.

There are much more … soon in Arxiv!



5. The orthogonality & the Ramanujan’s Master Theorem

technique, and he employed it in many contexts”. Most of the examples given by Ramanujan
by applying his Master Theorem turn out to be correct. But formulas (0.1) and (0.2) cannot
hold without additional assumptions, as one can easily see from the example a(λ) = sin(πλ).
The first rigorous reformulation of Ramanujan’s Master theorem was given by Hardy in his
book on Ramanujan’s work [16]. Using the residue theorem, Hardy proved that (0.1) holds
for a natural class of functions a and a natural set of parameters λ.

Let A, P, δ be real constants so that A < π and 0 < δ ≤ 1. Let H(δ) = {λ ∈ C :
Reλ > −δ}. The Hardy class H(A,P, δ) consists of all functions a : H(δ) → C that are
holomorphic on H(δ) and satisfy the growth condition

|a(λ)| ≤ Ce−P(Re λ)+A| Imλ|

for all λ ∈ H(δ). Hardy’s version of Ramanujan’s Master theorem is the following, see [16,
p. 189].

Theorem 0.1 (Ramanujan’s Master Theorem). Suppose a ∈ H(A,P, δ). Then:

(a) The power series

f(x) =
∞∑

k=0

(−1)ka(k)xk (0.3)

converges for 0 < x < eP and defines a real analytic function on this domain.
(b) Let 0 < σ < δ. For 0 < x < eP we have

f(x) =
1

2πi

∫ −σ+i∞

−σ−i∞

−π
sin(πλ)

a(λ)xλ dλ . (0.4)

The integral on the right hand side of (0.4) converges uniformly on compact subsets
of ]0,+∞[ and is independent of the choice of σ.

(c) Formula (0.1) holds for the extension of f to ]0,+∞[ and for all λ ∈ C with 0 <
Reλ < δ.

The last part of Theorem 0.1 is obtained from its second part by applying Mellin’s inver-
sion.

Ramanujan’s Master theorem has been extended to Riemannian symmetric spaces in dual-
ity by several authors. The rank-one semisimple case has been considered by Bertram in [5].
The starting point of Bertram’s extension is the following group theoretic interpretation of
(0.1). The functions xλ (λ ∈ C) are the spherical functions on XG = R+ and the xk (k ∈ Z)
are the spherical functions on the torus XU = U(1). Both XG and XU can be realized as real
forms of their complexification XC = C∗. Hence (0.1) gives a relation between the compact
and noncompact spherical trasforms of the restrictions to XU and XG of a “good” function
defined on XC. Bertram’s version of Ramanujan’s Master theorem was obtained by replacing
the duality between U(1) and R+ inside C∗ with the duality between symmetric spaces of the
compact type XU = U/K and of noncompact type XG = G/K inside their complexification
XC = GC/KC. Following the same point of view, the authors of the present paper proved
in [30] an analogue of Ramanujan’s Master theorem for (reductive) Riemannian symmetric
spaces of arbitrary rank. Some special classes of semisimple or reductive symmetric space
situations have also been considered by Bertram [4], Ding, Gross and Richard [9] and Ding
[8].
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We choose σ = 1/2, x = −c, and since

Γ(1− z)Γ(z) =
π

sin(πz)
⇒ Γ(1 + z)Γ(−z) =

−π

sin(πz)

then choosing

a(z) =
Γ(β + z)

Γ(z + 1)
Mn(z; c,β)z

m, β > 0,

we get
∫

C

Γ(−z)Γ(β + z)(−c)zMn(z; c,β)z
m dz =

∞
∑

k=0

Γ(β + k)

Γ(k + 1)
ckMn(k; c,β)z

m.
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Krawtchouk polynomials. We then use these relations to derive generalizations of generating
functions for these orthogonal polynomials. The coe�cients of these generalized generat-
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1 Introduction

Orthogonal polynomials are a group of polynomial families such that any two di↵erent polyno-
mials in that family are orthogonal to each other under some inner product. This relation can
sometimes be expressed discretely for a family of orthogonal polynomials {F

n

(x)}, n 2 N0, with
discrete weight w

·

: N0 ! (0,1) in terms of an infinite sum

1X

x=0

F

m

(x)F
n

(x)w
x

= r

n

�

m,n

,

where r

n

: N0 ! R, �

m,n

is the Kronecker symbol. [HSC: Give complex contour integral
example.] In this paper we treat generalizations of generating functions for a family of discrete
hypergeometric orthogonal polynomials, namely the Meixner and Krawtchouk polynomials.

The paper is organized as follows. In Section 2, preliminaries used in the proofs are in-
troduced. In Section 3, connection and connection-type relations are given for Meixner and
Krawtchouk polynomials. In Section 4, generalizations of generating functions for Meixner and
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