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Abstract. We use and derive connection and connection-type relations for Meixner and
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1 Introduction

Orthogonal polynomials are a group of polynomial families such that any two different polyno-
mials in that family are orthogonal to each other under some inner product. This relation can
sometimes be expressed discretely for a sequence of orthogonal polynomials. For instance, given
{Pn(x;a)}, n ∈ N0, with discrete weight wx ∈ C, a is a set of free parameters, and rn ∈ C, then
one may have the following discrete orthogonality relation

∞∑

x=0

Pm(x;a)Pn(x;a)wx(a) = rn(a)δm,n.

In this paper we discuss connection and connection-type relations, and generalizations of generat-
ing functions from these relations for a family of discrete hypergeometric orthogonal polynomials,
namely the Meixner and Krawtchouk polynomials [6, Sections 9.10-11].

The paper is organized as follows. In Section 2, some mathematical preliminaries which are
used in our proofs are introduced. In Section 3, connection and connection-type relations are
given for Meixner and Krawtchouk polynomials. In Section 4, generalizations of generating
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functions for Meixner and Krawtchouk polynomials are presented. In Section 5, infinite se-
ries expressions are given which are derived using orthogonality for Meixner and Krawtchouk
polynomials.

2 Preliminaries: hypergeometric functions

Our generalizations of generating functions rely on Pochhammer symbols. The Pochhammer
symbol, also called the shifted factorial, is a special function that is used to express coefficients
of polynomials. They can be used to express binomial coefficients, coefficients of derivatives of
polynomials, and are integral to the definition of hypergeometric functions. The Pochhammer
symbol is defined for a ∈ C, n ∈ N0, such that

(a)n := (a)(a+ 1) · · · (a+ n− 1), (2.1)

where as have assumed (and throughout this paper) that the empty product is unity. Define

Ĉ := {z ∈ C : −z 6∈ N0},

C0 := {z ∈ C : z 6= 0},

C0,1 := {z ∈ C : z 6∈ {0, 1}}.

One has the following useful identities for Pochhammer symbols, namely for n ∈ N0,

(a)n =
Γ(a+ n)

Γ(a)
, (2.2)

Γ(a− n) =
(−1)nΓ(a)

(−a+ 1)n
, (2.3)

where a ∈ Ĉ, and for k ∈ N0, a ∈ C, one has

(a)n+k = (a)n(a+ n)k = (a)k(a+ k)n. (2.4)

Moreover, for many of the proofs in this paper, we will need the following inequalities for
Pochhammer symbols [2, Lemma 12]. Let j ∈ N, k, n ∈ N0, z ∈ C, ℜu > 0, w > −1, v ≥ 0.
Then

|(u)j | ≥ (ℜu)(j − 1)!, (2.5)

(v)n
n!

≤ (1 + n)v, (2.6)

(n +w)k ≤ max{1, 2w}
(n+ k)!

n!
, (2.7)

(z + k)n−k ≤
n!

k!
(1 + n)|z|. (2.8)

The generalized generating functions we present in this paper often have coefficients which can
be expressed in terms of generalized hypergeometric functions. Generalized hypergeometric
functions rFs are special functions which can be represented by a hypergeometric series. These
are solutions of a max(s + 1, r)th order differential equation with three regular singular points.
The generalized hypergeometric function can be defined as [6, (1.4.1)]

rFs

(
a1, . . . , ar
b1, . . . , bs

; z

)
:=

∞∑

k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
. (2.9)
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For instance, we often take advantage of the binomial theorem [6, (1.5.1)] which can be expressed
as

1F0

(
a

−
; z

)
= (1− z)−a, |z| < 1. (2.10)

Sometimes, the coefficients of our generalized generating funcitons are given in terms of double
and triple hypergeometric functions. There exists a large classification of such functions. The
versions of these functions which we encounter are given as follows. For double hypergeometric
series we encounter the function F1 which is an Appell series. These are hypergeometric series
in two variables and are defined as [4, (16.13.1)]

F1

(
a, b, b

′

; c;x, y
)
:=

∞∑

m,n=0

(a)m+n(b)m(b
′

)n
(c)m+n

xm

m!

yn

n!
. (2.11)

We also encounter the function Φ2, which is a Humbert hypergeometric series of two variables
defined as [7, p. 25]

Φ2

(
β, β

′

; γ;x, y
)
:=

∞∑

m,n=0

(β)m(β
′

)n
(γ)m+n

xm

m!

yn

n!
. (2.12)

The function F
(3)
D , a hypergeometric function of three-variables, is a form of the triple Lauricella

series defined as [7, p. 33]

F
(3)
D (a, b1, b2, b3; c;x, y, z) :=

∞∑

m,n,p=0

(a)m+n+p (b1)m (b2)n (b3)p
(c)m+n+p

xm

m!

yn

n!

zp

p!
. (2.13)

The function Φ
(3)
2 is a confluent form of the triple Lauricella series defined as [7, p. 34]

Φ
(3)
2 (b1, b2, b3; c;x, y, z) :=

∞∑

m,n,p=0

(b1)m (b2)n (b3)p
(c)m+n+p

xm

m!

yn

n!

zp

p!
. (2.14)

3 Connection and connection-type relations

The Meixner polynomials are defined as [6, (9.10.1)]

Mn(x;α, c) := 2F1

(
−n,−x

α
; 1−

1

c

)
. (3.1)

In this section we derive connection and connection-type (see Remark 2) relations for Meixner
polynomials. For the entire paper, we assume that x ∈ C, n ∈ N0. The following connection
relations for Meixner polynomials can be found in Gasper (1974) [5, (5.2-5)].

Theorem 1. Let α, β ∈ Ĉ, c, d ∈ C0,1. Then

Mn(x;α, c) =

n∑

k=0

(
n

k

)
(β)k
(α)k

(
d(1− c)

c(1 − d)

)k

2F1

(
−n+ k, k + β

k + α
;
d(1 − c)

c(1 − d)

)
Mk(x;β, d). (3.2)

By setting β = α in (3.2) one obtains the following corollary.

Corollary 2. Let α ∈ Ĉ, c, d ∈ C0,1. Then

Mn(x;α, c) =

(
c− d

c(1− d)

)n n∑

k=0

(
n

k

)(
d(1− c)

c− d

)k

Mk(x;α, d). (3.3)
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Furthermore by setting d = c in (3.2) and using the Gauss formula [4, (15.4.20)], one obtains
the following corollary.

Corollary 3. Let α, β ∈ Ĉ, c ∈ C0,1. Then

Mn(x;α, c) =
1

(α)n

n∑

k=0

(
n

k

)
(α− β)n−k(β)kMk(x;β, c). (3.4)

Remark 1. Note that even though Theorem 1 was originally stated in [5] for α > 0, c ∈ (0, 1),
one can extend [5, (5.9-12)] analytically for α, β ∈ C, −α,−β 6∈ N0, c, d ∈ C0,1, since, in such a
case, one loses normality of the polynomials, i.e., degMn(x) < n for some n. However, formally,
Theorem 1 remains true for c = 1, and all β, d in the above domains.

Remark 2. By connection-type relations for orthogonal polynomials, we mean a relation where
the left-hand side is an orthogonal polynomial with argument x and set of parameters a, and
the right-hand side is given by a finite sum over coefficients which in general may depend on x,
multiplied by a product of that same polynomial with a set of different parameters b, namely

Pn(x;a) =

n∑

k=0

αk,n(x;a,b)Pk(x;b).

Connection-type relations are not connection relations because the coefficients multiplying the
orthogonal polynomials depend on the argument. For connection relations, the coefficients of
the orthogonal polynomials must not depend on the argument.

We now derive a connection-type relation for Meixner polynomials corresponding to the
parameter c.

Theorem 4. Let α ∈ Ĉ, c, d ∈ C0,1. Then

Mn(x;α, c) =
1

(α)n

n∑

k=0

(
n

k

)
(α)k(x)n−k

dn−k 2F1

(
−n+ k,−x

−x+ k − n+ 1
;
d

c

)
Mk(x;α, d). (3.5)

Proof. A generating function for Meixner polynomials is given as [6, (9.10.11)]

(
1−

t

c

)x

(1− t)−x−α =

∞∑

n=0

(α)n
n!

Mn(x;α, c)t
n, |t| < |c| < 1. (3.6)

The above connection-type relation (3.5) can be derived by starting with (3.6), and multiplying

the left-hand side by

(
1−

t

d

)x/(
1−

t

d

)x

, |t| < |d| < 1. One then has

(
1−

t

c

)x(
1−

t

d

)−x(
1−

t

d

)x

(1−t)−x−α =

(
1−

t

c

)x(
1−

t

d

)−x ∞∑

m=0

(α)m
m!

Mm(x;α, d)tm.

After using the binomial theorem (2.10), the left-hand side becomes

∞∑

k=0

(−x)k
k!

(
t

c

)k ∞∑

s=0

(x)s
s!

(
t

d

)s ∞∑

m=0

(α)m
m!

Mm(x;α, d)tm.

By collecting the terms associated with tn, (3.5) follows using analytic contination in c, d, and
(2.2), (2.3) and (2.9). �
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We now derive a connection-type relation for Meixner polynomials corresponding to free pa-
rameters α, c. The theorem below is not a connection relation because the coefficients multiplied
by the Meixner polynomials depend on x (see Remark 2).

Theorem 5. Let α, β ∈ Ĉ, c, d ∈ C0,1. Then

Mn(x;α, c) =
(α− β)n
(α)n

n∑

k=0

(β)k(−n)k
k!(β − α− n+ 1)k

F1

(
−n+ k,−x, x;β − α− n+ k + 1;

1

c
,
1

d

)

×Mk(x;β, d), (3.7)

where F1 is given by (2.11).

Proof. We substitute the connection relation for the free parameter α (3.4) with the connection-
type relation for the free parameter d (3.5) to obtain the result

Mn(x;α, c) =
1

(α)n

n∑

k=0

(
n

k

)
(α− β)n−k(β)k

k!

(β)k

k∑

m=0

(β)m(x)k−m

m!(k −m)!dm−k

×2F1

(
−k +m,−x

−x+m− k + 1
;
d

c

)
Mm(x;β, d).

If we expand the hypergeometric, switch the order of summations twice, and use (2.2)-(2.3),
(2.9), and (2.11) the result follows. �

We have just found a finite expansion of the Meixner polynomials with free parameters α, c in
terms of Meixner polynomials with free parameters β, d. The coefficient of the connection-type
relation depends on x, so this is not a connection relation. We now combine generating functions
for Meixner polynomials with that connection-type relation to derive generalized generating
functions.

In the other hand, the Krawtchouk polynomials are a particular case of Meixner polynomials.
In fact, they are related in the following way:

Kn(x; p,N) = Mn

(
x;−N,

p

p− 1

)
. (3.8)

Taking this into account, we can write them as a truncated hypergeometric series as [6, (9.11.1)]

Kn(x; p,N) := 2F1

(
−n,−x

−N
;
1

p

)
. (3.9)

The following results can be found in [5, (5.9-10), (5.11-12)].

Theorem 6. Let n,M,N ∈ N0, n ≤ N ≤ M , p, q ∈ C0. Then

Kn(x; p,N) =
n∑

k=0

(
n

k

)
qk(−M)k
pk(−N)k

2F1

(
−n+ k, k −M

k −N
;
q

p

)
Kk(x; q,M). (3.10)

Corollary 7. Let n,N ∈ N0, n ≤ N , p, q ∈ C0. Then

Kn(x; p,N) =

(
p− q

p

)n n∑

k=0

(
n

k

)(
q

p− q

)k

Kk(x; q,N). (3.11)

Furthermore by setting d = c in (3.2) and using the Gauss formula [4, (15.4.20)], one obtains
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Corollary 8. Let n,M,N ∈ N0, n ≤ N ≤ M , p, q ∈ C0. Then

Kn(x; p,N) =
1

(−N)n

n∑

k=0

(
n

k

)
(M −N)n−k(−M)kKk(x; p,M). (3.12)

Remark 3. Observe that the previous results can be obtained from (3.1) by setting the right
values and using the relation (3.8).

We now combine generating functions for Krawtchouk polynomials with these connection
relations to derive generalized generating functions.

4 Generalized generating functions

We now derive generalized generating functions for the Meixner polynomials.

Theorem 9. Let α, β ∈ Ĉ, c, d ∈ C0,1, t ∈ C. Then

et1F1

(
−x

α
;
t(1− c)

c

)
=

∞∑

n=0

(β)n
(α)nn!

(
d(1− c)

c(1− d)

)n

1F1

(
β + n

α+ n
;
−td(1− c)

c(1 − d)

)
Mn(x;β, d)t

n. (4.1)

Proof. Using the generating function for Meixner polynomials [6, (9.10.12)]

et1F1

(
−x

α
;
t(1− c)

c

)
=

∞∑

n=0

Mk(x;β, d)
tn

n!

and (3.2), we obtain

et1F1

(
−x

α
;
t(1− c)

c

)

=

∞∑

n=0

tn

n!

n∑

k=0

(
n

k

)
(β)k
(α)k

(
d(1 − c)

c(1 − d)

)k

2F1

(
−n+ k, β + k

α+ k
;
d(1− c)

c(1− d)

)
Mk(x;β, d).

If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, switch the order of summations again, and use (2.2)-(2.3) and (2.9). Again, in order
to justify reversing the summation symbols it is enough to show that

∞∑

n=0

|an|

∣∣∣∣∣

n∑

k=0

ck,nMk(x;β, d)

∣∣∣∣∣ < ∞,

where |Mk(x, β, d)| ≤ K1(1 + k)σ2d−k, an = tn/n!, hence |an| ≤ |t|n/n!, and

ck,n =
n−k∑

s=0

(−1)k(−n)s+k(β)s+k

(α)s+kk!s!

(
d(1− c)

c(1 − d)

)s+k

,

where K1 and σ1 are positive constants not depending on n. Then since

∞∑

n=0

|an|

∣∣∣∣∣

n∑

k=0

ck,nMk(x;β, d)

∣∣∣∣∣ ≤ K1K2

∞∑

n=0

(1 + n)σ1+σ2+1

n!

∣∣∣∣
t

c

∣∣∣∣
n ∣∣∣∣

1 + d− 2c

1− d

∣∣∣∣
n

< ∞,

the result follows because all the sums connected with these coefficients converge. �

The next result is a direct consequence of Theorem 9.
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Theorem 10. Let α, β ∈ Ĉ, c ∈ C0,1, t ∈ C. Then

et1F1

(
−x

α
;
t(1− c)

c

)
=

∞∑

n=0

(β)n
(α)nn!

1F1

(
α− β

α+ n
; t

)
Mn(x;β, c)t

n. (4.2)

We have just found a finite expansion of the Meixner polynomials with free parameter c in
terms of Meixner polynomials with free parameter d. The coefficient of the connection-type
relation depends on x, so this is not a connection relation. We now combine Meixner generating
function [6, (9.10.12)] with that connection-type relation to derive a generalized generating
function.

Theorem 11. Let α ∈ Ĉ, c, d ∈ C0,1, t ∈ C. Then

et1F1

(
−x

α
;
t(1− c)

c

)
=

∞∑

n=0

1

n!
Φ2

(
x,−x;α+ n;

t

c
,
t

d

)
Mn(x;α, d)t

n, (4.3)

where Φ2 is given by (2.12).

Proof. Using [6, (9.10.12)] and (3.5), we obtain

et1F1

(
−x

α
;
t(1− c)

c

)
=

∞∑

n=0

tn

(α)n

n∑

k=0

(α)k(x)n−k

k!(n − k)!dn−k
Mk(x;α, d)

×2F1

(
−n+ k,−x

−x+ k − n+ 1
;
d

c

)
.

(4.4)

Switch the order of the summations based on n and k, shift the n variable by a factor of k,
expand the hypergeometric, and use (2.2)-(2.3), (2.9), and (2.12). We can justify the reversing
the summation symbols since in this case

an =
tn

n!
, and ck,n =

(
n

k

)
(α)k(x)n−k

dn−k 2F1

(
−n+ k,−x

−x+ k − n+ 1
;
d

c

)
.

Therefore

∞∑

n=0

|an|

∣∣∣∣∣

n∑

k=0

ck,nMk(x;α, d)

∣∣∣∣∣ ≤ K3

∞∑

n=0

(1 + n)σ3

n!

∣∣∣∣
t

c

∣∣∣∣
n

,

where K3 and σ3 are positive constants not depending on n, then the result holds since all these
sums connected with these coefficients converge. �

Theorem 12. Let α, β ∈ Ĉ, c, d ∈ C0,1, t ∈ C. Then

et1F1

(
−x

α
;
t(1− c)

c

)
=

∞∑

n=0

(β)n
(α)nn!

Φ
(3)
2

(
x,−x, α− β;α + n;

t

c
,
t

d
, t

)
Mn(x;β, d)t

n, (4.5)

where Φ
(3)
2 is given in (2.14).

Proof. Using [6, (9.10.12)] and (3.7), we obtain

et1F1

(
−x

α
;
t(1− c)

c

)
=

∞∑

n=0

tn

n!

(α− β)n
(α)n

n∑

k=0

(β)k(−n)k
k!(β − α− n+ 1)k

Mk(x;β, d)

×F1

(
−n+ k,−x, x;β − α− n+ k + 1;

1

c
,
1

d

)
.

(4.6)



8 M. A. Baeder, H. S. Cohl, R. S. Costas-Santos, W. Xu

Switch the order of the summations based on n and k, shift the n variable by a factor of k,expand
the Appell series, switch the order of summations two more times, and use (2.2)-(2.3), (2.9),
and (2.14). Indeed,

∞∑

n=0

|an|

∣∣∣∣∣

n∑

k=0

ck,nMk(x;β, d)

∣∣∣∣∣ ≤ K4

∞∑

n=0

(1 + n)σ4

n!

∣∣∣∣
t(c+ d)

cd

∣∣∣∣
n

< ∞,

where K4 and σ4 are positive constants not depending on n, then the result holds since all these
sums connected with these coefficients can be rearranged in the desired way. �

We also have the connection relation with one free parameter given by (3.4). We now combine
this connection relation with the above referenced generating functions to obtain new generalized
generating functions for Meixner polynomials.

Theorem 13. Let c ∈ C0,1, γ, t ∈ C, |t| < 1, |t(1− c)| < |c(1 − t)|, α, β ∈ Ĉ. Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1− t)

)
=

∞∑

n=0

(γ)n(β)n
(α)nn!

2F1

(
γ + n, α− β

α+ n
; t

)
Mn(x;β, c)t

n. (4.7)

Proof. Using the generating function for Meixner polynomials [6, (9.10.13)] and (3.4), we obtain

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1− t)

)
=

∞∑

n=0

(γ)nt
n

(α)n

n∑

k=0

(α− β)n−k(β)k
(n− k)!k!

Mk(x;β, c).

If we switch the order of summations, shift the n variable by a factor of k and use (2.2)-(2.3)
and (2.9). Indeed, in this case an = tn(γ)n/n!, therefore

|an| ≤ |t|n(1 + n)|γ|.

So, we have

∞∑

n=0

|an|

∣∣∣∣∣

n∑

k=0

ck,nMk(x;β, c)

∣∣∣∣∣ ≤ K5

∞∑

n=0

(1 + n)σ5

∣∣∣∣
t(1− c)

c(1− t)

∣∣∣∣
n

,

where K5 and σ5 are positive constants not depending on n. Therefore if |t| < 1 and |t(1− c)| <
|c(1 − t)| the sum converges, then the result holds since all these sums connected with these
coefficients can be rearranged in the desired way. �

Theorem 14. Let c, d ∈ C0,1, γ, t ∈ C, |t| < min{1, |c(1 − d)|/|1 + d− 2c|}, α, β ∈ Ĉ. Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1− t)

)
=

∞∑

n=0

(γ)n(β)n
(α)nn!

2F1

(
γ + n, β + n

α+ n
;

−dt(1− c)

c(1− d)(1 − t)

)

×

(
d(1 − c)

c(1 − d)(1− t)

)n

Mn(x;β, d)t
n.

(4.8)

Proof. Using [6, (9.10.13)] and (3.2), we obtain

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1 − t)

)
=

∞∑

n=0

(γ)n
n!

tn
n∑

k=0

(β)kn!

k!(n − k)!(α)k

(
d(1 − c)

c(1 − d)

)k

Mk(x;β, d)

×2F1

(
−n+ k, β + k

α+ k
;
d(1− c)

c(1− d)

)
.

If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, switch the order of summations again, and use (2.2)-(2.3) and (2.9), then the result
holds since all these sums connected with these coefficients converge (it is similar to the previous
proof combined with the proof of Theorem 9) and can be rearranged in the desired way. �
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We have just found a finite expansion of the Meixner polynomials with free parameter c in terms
of Meixner polynomials with free parameter d. The coefficient of the connection-type relation
depends on t, so this is not a connection relation. We now combine Meixner generating function
[6, (9.10.13)] with that connection-type relation to derive a generalized generating function.

Theorem 15. Let |t| < min{1, |c|}, α ∈ Ĉ, γ ∈ C, c, d ∈ C0,1. Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1 − t)

)
=

∞∑

n=0

(γ)n
n!

F1

(
γ + n, x,−x;α+ n;

t

c
,
t

d

)
Mn(x;α, d)t

n. (4.9)

Proof. Using [6, (9.10.13)] and (3.5), we obtain

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1− t)

)
=

∞∑

n=0

(γ)nt
n

(α)nn!

n∑

k=0

(α)k(x)n−k

k!(n− k)!dn−k
Mk(x;α, d)

×2F1

(
−n+ k,−x

−x+ k − n+ 1
;
d

c

)
.

Switch the order of the summations based on n and k, shift the n variable by a factor of k,
expand the hypergeometric, and use (2.2)-(2.3), (2.9), and (2.11), then the result holds since all
these sums connected with these coefficients converge (it is similar to the proof of Theorem 13
combined with the proof of Theorem 11) and can be rearranged in the desired way. �

Theorem 16. Let |t| < min{1, |cd|/|c + d|}, α, β ∈ Ĉ, γ ∈ C, c, d ∈ C0,1. Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1− t)

)
=

∞∑

n=0

(β)n(γ)n
(α)nn!

F
(3)
D

(
γ + n, x,−x, α− β;α+ n;

t

c
,
t

d
, t

)

×Mn(x;β, d)t
n,

(4.10)

where F
(3)
D is given in (2.13).

Proof. Using [6, (9.10.13)] and (3.7), we obtain

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)

c(1− t)

)
=

∞∑

n=0

(γ)nt
n

n!

(α− β)n
(α)n

∞∑

k=0

(β)k(−n)k
k!(β − α− n+ 1)k

Mk(x;β, d)

×F1

(
−n+ k,−x, x;β − α− n+ k + 1;

1

c
,
1

d

)
.

(4.11)

Switch the order of the summations based on n and k, shift the n variable by a factor of k,expand
the Appell series, switch the order of summations two more times, and use (2.2)-(2.3), (2.9),
and (2.13),then the result holds since all these sums connected with these coefficients converge
(it is similar to the proof of Theorem 13 combined with the proof of Theorem 17) and can be
rearranged in the desired way. �

We have derived generalized generating functions for the free parameter c. However, since the
coefficients of our connection-type relation is in terms of x, we cannot use the orthogonality
relation to create new infinite sums. Note that the application of connection relations (3.4) and
(3.5) to the rest of the known generating functions for Meixner polynomials [6, (9.10.11-13)]
leave these generating functions invariant. We now derive generalized generating functions for
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the Krawtchouk polynomials, where we will need a special notation for some of the generating
functions. Let f ∈ C∞(C), N ∈ N0, t ∈ C. Define

[f(z)]N :=

N∑

k=0

f (k)(0)

k!
tk.

Theorem 17. Let p ∈ C0, M,N ∈ N0, N ≤ M , t ∈ C. Then

[
et1F1

(
−x

−N
;−

t

p

)]

N

=

M∑

n=0

(−M)n
(−N)nn!

1F1

(
n−M

n−N
;−t

)
Kn(x; p,M)tn. (4.12)

Proof. Using the generating function for Krawtchouk polynomials [6, (9.11.12)] and (3.12), we
obtain

[
et1F1

(
−x

−N
;−

t

p

)]

N

=
N∑

n=0

tn

n!(−N)n

n∑

k=0

(
n

k

)
(M −N)n−k(−M)kKk(x; p,M) (4.13)

If we switch the order of summations, shift the n variable by a factor of k and use (2.2)-(2.3)
and (2.9), the proof follows since all the series have finite number of terms. �

Theorem 18. Let p, q ∈ C0, M,N ∈ N0, N ≤ M , t ∈ C. Then

[
et1F1

(
−x

−N
;−

t

p

)]

N

=
M∑

n=0

(−M)n
(−N)nn!

(
q

p

)n

1F1

(
n−M

n−N
;
−tq

p

)
Kn(x; q,M)tn. (4.14)

Proof. Using [6, (9.11.12)] and (3.11), we obtain

[
et1F1

(
−x

−N
;−

t

p

)]

N

=
N∑

n=0

tn

n!

n∑

k=0

(
n

k

)
(−M)kq

k

(−N)kpk
2F1

(
−n+ k, k −M

k −N
;
q

p

)
Kk(x; q,M). (4.15)

If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, then switch the order of summations again and shift the n variable again, and use
(2.2)-(2.3) and (2.9), the proof follows since all the series have finite number of terms. �

Theorem 19. Let p ∈ C0, M,N ∈ N0, N ≤ M , t, γ ∈ C. Then

[
(1− t)−γ

2F1

(
γ,−x

−N
;

t

p(t− 1)

)]

N

=
M∑

n=0

(−M)n(γ)n
(−N)nn!(1− t)n

2F1

(
n−M,γ + n

n−N
;

−t

1− t

)

×Kn(x; p,M)tn.

(4.16)

Proof. Using [6, (9.11.12)] and (3.12), we obtain

(1−t)−γ
2F1

(
γ,−x

−N
;

t

p(t− 1)

)
=

N∑

n=0

(γ)n
n!(−N)n

n∑

k=0

(
n

k

)
(M−N)n−k(−M)kKk(x; p,M)tn. (4.17)

If we switch the order of summations, shift the n variable by a factor of k and use (2.2)-(2.3)
and (2.9), the proof follows since all the series have finite number of terms. �
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Theorem 20. Let p, q ∈ C0, M,N ∈ N0, N ≤ M , t, γ ∈ C. Then

[
(1− t)−γ

2F1

(
γ,−x

−N
;

t

p(t− 1)

)]

N

=

M∑

n=0

(−M)n(γ)n
(−N)nn!

1F1

(
n−M

n−N, γ + n
;

−tq

p(1− t)

)

×
qn

(1− t)npn
Kn(x; q,M)tn.

(4.18)

Proof. Using [6, (9.11.12)] and (3.11), we obtain

(1− t)−γ
2F1

(
γ,−x

−N
;

t

p(t− 1)

)
=

N∑

n=0

(γ)n
n!

tn
n∑

k=0

(
n

k

)
(−M)kq

k

(−N)kpk
2F1

(
−n+ k, k −M

k −N
;
q

p

)

×Kk(x; q,M).

(4.19)

If we switch the order of summations, shift the n variable by a factor of k, expand the hyper-
geometric, then switch the order of summations again and shift the n variable again, and use
(2.2)-(2.3) and (2.9), the proof follows since all the series have finite number of terms. �

Note that the application of connection relations (3.11) and (3.12) to the rest of the known gen-
erating functions for Krawtchouk polynomials [6, (9.11.11-13)] leave these generating functions
invariant.

5 Results using orthogonality

We have derived generalized generating functions for the free parameter α. We now combine
this with the orthogonality relation for Meixner polynomials to produce new results from our
generalized generating functions. The well-known orthogonality relation for Meixner polynomials
for n,m ∈ N0, α > 0, c ∈ (0, 1) is [6, (14.25.2)]

∞∑

x=0

Mn(x;α, c)Mm(x;α, c)
Γ(x + α)cx

Γ(x+ 1)
= κnδm,n, (5.1)

where

κn =
n!

cn(1− c)α(α)n
.

Note that this a particular case of a more general property of orthogonality fulfilled by Meixner
polynomials (see [3, Proposition 9]).

Proposition 21. Let m,n ∈ N0, α ∈ Ĉ, c ∈ C \ [0,∞). The orthogonality relation for Meixner
polynomials can be given as

∫

C

Mn(z;α, c)Mm(x;α, c)Γ(−z)Γ(z + α)(−c)zdz = κnδm,n, (5.2)

where C is a complex contour from −∞i to ∞i separating the increasing poles at z ∈ N0 from
the decreasing poles at z ∈ {−α,−α− 1,−α − 2, . . . }.

In fact, observe that the case c > 0 cannot be considered by an integral of the form (5.2)
since it diverges. However, when |c| < 1, (5.2) is rewritten on the form (see [8, Section 5.6]
for details) presented in (5.1). With this result in mind, the following result and corresponding
consequences hold.
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Theorem 22. Let t ∈ C, α, β ∈ Ĉ, c ∈ C \ [0,∞). Then

∫

C
1F1

(
−x

α
;
t(1− c)

c

)
Mn(x;β, c)Γ(−z)Γ(z +α)(−c)z dz =

tn e−t

(1− c)β(α)ncn
1F1

(
α− β

α+ n
; t

)
.

(5.3)

Proof. From (4.2) we multiply both sides byMm(x;β, c)w(x;β, c), where w(x;β, c) := Γ(−z)Γ(z+
α)(−c)z , utilizing the orthogonality relation (5.2), produces the desired result. �

Corollary 23. Let t ∈ C, α, β > 0, c ∈ (0, 1). Then

∞∑

x=0

1F1

(
−x

α
;
t(1− c)

c

)
Mn(x;β, c)

(β)xc
x

x!
=

tn e−t

(1− c)β(α)ncn
1F1

(
α− β

α+ n
; t

)
. (5.4)

Corollary 24. Let t ∈ C, α, β ∈ Ĉ, c, d ∈ C \ [0,∞). Then

∫

C
1F1

(
−x

α
;
t(1− c)

c

)
Mn(x;β, d)Γ(−z)Γ(z + β)(−d)z dz =

tn(1− c)ne−t

(1− d)n+β(α)ncn

×1F1

(
β + n

α+ n
;
−dt(1− c)

c(1 − d)

)
.

(5.5)

Proof. From (4.1) we multiply both sides by Mm(x;β, c)w(x;β, c), utilizing the orthogonality
relation (5.2). �

Corollary 25. Let t ∈ C, α, β > 0, c, d ∈ (0, 1). Then

∞∑

k=0

1F1

(
−x

α
;
t(1− c)

c

)
Mn(x;β, d)

dx(β)x
x!

=
tn(1− c)ne−t

cn(1− d)n+β(α)n
1F1

(
β + n

α+ n
;
−dt(1− c)

c(1 − d)

)
. (5.6)

Corollary 26. Let c ∈ C \ [0,∞), t ∈ C, |t| < 1, |t(1− c)| < |c(1 − t)|, α, β ∈ Ĉ, γ ∈ C. Then

∫

C
2F1

(
γ,−x

α
;
t(1− c)

c(1 − t)

)
Mn(x;β, c)Γ(z+β)(−c)z dz =

(1− t)γ(γ)nt
n

(1− c)β(α)ncn
2F1

(
α− β, γ + n

α+ n
; t

)
.

(5.7)

Proof. From (4.7) we multiply both sides by Mm(x;β, c)w(x;β, c), utilizing the orthogonality
relation (5.2). �

Corollary 27. Let c ∈ (0, 1), t ∈ C, |t| < 1, |t(1− c)| < |c(1 − t)|, α, β > 0, γ ∈ C. Then

∞∑

x=0

2F1

(
γ,−x

α
;
t(1− c)

c(1 − t)

)
Mn(x;β, c)

cx(β)x
x!

=
(1− t)γ(γ)nt

n

(1− c)β(α)ncn
2F1

(
α− β, γ + n

α+ n
; t

)
. (5.8)

Corollary 28. Let t ∈ C, |t| < min{1, |c(1− d)|/|1+ d− 2c|}, α, β ∈ Ĉ, γ ∈ C, c, d ∈ C \ [0,∞).
Then

∫

C
1F1

(
γ,−x

α
;
t(1− c)

c(1 − t)

)
Mn(x;β, d)Γ(z + β)(−d)z dz =

(γ)n
(1− d)n+β(α)n

(
t(1− c)

c(1− t)

)n

×2F1

(
γ + n, β + n

α+ n
;

−dt(1− c)

c(1− d)(1 − t)

)
.

(5.9)

Proof. From (4.8) we multiply both sides by Mm(x;β, c)w(x;β, c), utilizing the orthogonality
relation (5.1), produces the desired result. �
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Corollary 29. Let c, d ∈ (0, 1), t ∈ C, |t| < min{1, |cd|/|c + d|}, α, β > 0, γ ∈ C. Then

∞∑

k=0

1F1

(
γ,−x

α
;
t(1− c)

c(1− t)

)
Mn(x;β, d)

dx(β)x
x!

=
(γ)n

(1− d)n+β(α)n

(
t(1− c)

c(1− t)

)n

×2F1

(
γ + n, β + n

α+ n
;

−dt(1− c)

c(1− d)(1 − t)

)
.

(5.10)

On the other hand, since the Krawtchouk polynomials satisfy the property of orthogonality

N∑

x=0

(
N

x

)
px(1− p)N−xKn(x; p,N)Km(x; p,N) =

(−1)nn!

(−N)n

(
1− p

p

)n

δn,m,

the following identities follow with proofs given as above, which we omit.

Corollary 30. Let p ∈ C0, M,N ∈ N0, N ≤ M , t ∈ C. Then

M∑

x=0

(
M

x

)
px(1− p)M−x

[
et1F1

(
−x

−N
;−

t

p

)]

N

Kn(x; p,M) =
(p− 1)ntn

pn(−N)n
1F1

(
n−M

n−N
;−t

)
.

Corollary 31. Let p, q ∈ C0, M,N ∈ N0, N ≤ M , t ∈ C. Then

M∑

x=0

(
M

x

)
qx(1− q)M−x

[
et1F1

(
−x

−N
;−

t

p

)]

N

Kn(x; q,M) =
(q − 1)ntn

pn(−N)n
1F1

(
n−M

n−N
;
−tq

p

)
.

Corollary 32. Let γ ∈ C, p ∈ C0, M,N ∈ N0, N ≤ M , t ∈ C, |t| < 1. Then

M∑

x=0

(
M

x

)
px(1− p)M−x

[
(1− t)−γ

2F1

(
γ,−x

−N
;

t

p(t− 1)

)]

N

Kn(x; p,M)

=
(γ)n(1− p)ntn

(−N)n(t− 1)npn
2F1

(
n−M,γ + n

n−N
;

−t

1− t

)
.

Corollary 33. Let γ ∈ C, p, q,∈ C0, M,N ∈ N0, N ≤ M , t ∈ C, |t| < 1. Then

M∑

x=0

(
M

x

)
qx(1− q)M−x

[
(1− t)−γ

2F1

(
γ,−x

−N
;

t

p(t− 1)

)]

N

Kn(x; q,M)

=
(γ)n(q − 1)ntn

(−N)npn(1− t)n
1F1

(
n−M

n−N, γ + n
;

−tq

p(1− t)

)
.
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