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Abstract. In this contribution we consider sequences of monic polynomials orthogonal with
respect to a Sobolev-type inner product

(f,9)s = (u, fg) + N(Zy[)(a)(Zg9)(@),  a€R, N=0,

where u is a g-classical linear functional and &, is the g-derivative operator.

We obtain some algebraic properties of these polynomials such as an explicit representation, a
five-term recurrence relation as well as a second order linear g-difference holonomic equation
fulfilled by such polynomials.

We present an analysis of the behaviour of its zeros as a function of the mass N. In particular,
we obtain the exact values of N such that the smallest (respectively, the greatest) zero of
the studied polynomials is located outside of the support of the measure.

We conclude this work considering two examples.
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1 Introduction

The study of polynomial sequences orthogonal with respect to an inner product involving
differences was started in two papers [?, ?7]. H. Bavinck considered the inner product

(P, q) =/Rp(t)Q(t)du(t)+/\(Ap)(0)(AQ)(C)7 (1)

where p, q are polynomials with real coefficients, ¢ € R, p is a distribution function with infinite
support such that p has no points of increase in the interval (¢,c¢ + 1), A € R4, and where
(Ap)(c) = p(c+ 1) — p(c) denotes the forward difference operator.

Later on, in [?] the authors obtained a difference operator of infinite order for which these
orthogonal polynomials (called Sobolev-type Meixner polynomials) are eigenfunctions. The
name Sobolev-type is justified from the analogy with the case

(7 q) = /R p()a(t)dut) + My (&) (e),

which has been widely considered in the literature (e.g. see the survey in Sobolev polynomials

[7])-
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Taking all this into account, the main idea of this paper is to obtain similar results for the
polynomials sequence orthogonal with respect to a g-analogue of (?7), i.e. orthogonal with
respect to the Sobolev-type inner product

(f:9)s = (u, fg) + N(Zyf)(@)(Zg9)(a),

where u is a ¢-classical linear functional and N, « € R.

The structure of the paper is the following: In Section 2, we introduce some notation and
results we need to prove some of the results throughout the paper. In Section 3, we define
the discrete Sobolev-type polynomials and present some algebraic, and analytical, results about
these polynomials. And in Section 4 we apply the obtained results to the Al-Salam-Carlitz 1
polynomials as well as to the Stieltjes—Wigert polynomials.

2 Basic definitions, notations and results

Let P denote the vector space of univariate, complex-valued, polynomials, and let P’ denote
its algebraic dual space. We denote by (u,p) the duality bracket for u € P’ and p € P, and
up, = (u,z™) with n > 0 are the canonical moments of u.

Definition 1. [?] A linear functional u is said to be quasi-definite if the principal submatrices
of the infinite Hankel matrix associated with the sequence of the moments (uy), of the linear
functional u, i.e. Hy = (ui+k)§j:0, are non-singular.

We are going to consider the quasi-definite linear functional u. Therefore, there exists a
sequence of monic polynomials (p,,), with degp, = n, orthogonal with respect to u, i.e.

<11,Pnpm> = knén,ma ky = <u,p721> 7& 0.

Such a sequence is said to be a monic orthogonal polynomial sequence (MOPS) associated with
the linear functional u.

Definition 2. Let u be a linear functional and let p be a fixed polynomial. We define the linear
functional pu as follows:

(pu,ry = (u,pr), rekl.

We also need to introduce the concept of quasi-orthogonality that is weaker than the concept
of orthogonality.

Definition 3. Given a linear functional u. Let p, be a polynomial of degree n > r. If p,
satisfies the conditions

0, 7=0,1,....n—7r—1,
#07 j:n_T7

then p, is said to be quasi-orthogonal of order r with respect to the linear functional u.
Moreover, if there exists an integral representation of u as follows

(u, xjpn> = {

(u,p) = /1 p(z) du(z), TCR,

then p,, is said to be quasi-orthogonal of order r with respect to the measure du(x).

The next definitions are related with the g-polynomials located in the Hahn class. In fact,
we assume along the paper 0 < g < 1.
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Definition 4. The g¢-derivative or the Euler-Jackson g-difference operator &, is defined as
follows:

flgz) — f(x)

(Zyf)(x) := (q - Dz

f'(=)

Definition 5. Given a linear functional u. We say that u is g-classical if it fulfils the Pearson-
type distributional difference equation

Dyld(s)u] = P(s)u,  ¢,9 €P,

where deg¢p < 2, degy = 1. The corresponding MOPS associated with u is said to be a
g-classical discrete MOPS, also called (monic) g-polynomials.

ifxA0Aqg#1,
ifr=0vqg=1.

Remark 1. Observe that these functionals u usually have the form

/ P(z)p(x)dyz, Al-Salam-Carlitz I, discrete g-Hermite I,
<u>P> = ’
/ P(z)p(x)dz, Stieltjes-Wigert.

a

etc., where p is a weight function satisfying the following difference equation of Pearson-type

p(s+1) _o(s)+¥(s)Ax(s —1/2)
p(s) P(s+1) '

Definition 6. The Jackson g-integrals (see [?, ?]) are defined by

/0 gt = a1 - 9) Y Fa" )"
n=0

Alp(s)p(s)] = (s)p(s) Aa(s — 1/2)

O [ee]
/ FOdgt = —a(l— )3 F(q"a)g"
a n=0

if a > 0 and a < 0, respectively. So, we have

e v s
/f dt—/f dt+/f

when 0 < a < b and a < 0 < b, respectively. Furthermore, we make use of the improper
g-Jackson integral

/ T rwdt=(-9) S H@)

n=—oo

Examples of these polynomials are the big g-Jacobi, the big g-Legendre, the big ¢-Laguerre,
the Little g-Legendre, the Al-Salam-Carlitz I, and the discrete g-Hermite of type I polynomials
[?, pp. 438, 443, 478, 534, 547], among others.

The next definitions are related with the g-calculus framework:
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Definition 7. The g-number [z]4, is defined by

1—¢*
[Z]CI'_ 1_q7

z €C,

Definition 8. A g-analogue of the factorial of n is defined by
0] :==1, [nlg!:=[nlgln—1];---[1], n=1,2,...

Definition 9. A g-analogue of the Pochhammer symbol, or shifted factorial, [?, ?] is defined by

n—1
(CL; Q)O =1, (CL; Q)n = H(l - a‘q])v n=12...
j=0
s .
(@:9)o = [[(1 = ad’), o] < 1.
=0

Moreover, we will use the following notation

r

(a1, ars @k = [ [ (055 Q).

Jj=1

Definition 10. Let (a;);_; and (b;)_, be complex numbers such that b; # ¢~ with n € Ny,
for j =1,2,...,s. The basic hypergeometric series, or g-hypergeometric, ,¢; series with variable
z is defined by

k

(9]
(a1,...,ar; Q) k —r %
’r‘d)s(a17"'7a7‘;b17~-- S7Q7 Z - ) ((_1)kq(2))1+5 " qq)k

—

To complete this section we present some useful results we need along the paper.

Proposition 1. (Christoffel-Darboux formula). Let (p,) be a sequence of monic polynomials
orthogonal with respect to the linear functional u. If we denote the n-th reproducing kernel by

Zpk: pk

7pk

Then, for all n € N,

L pa(@)pn-1(y) = pu(y)pn-1(z) (2)

K. —
n(a:,y) <u7p%_1> x—y

Taking into account the inner product we have considered, then it is natural to consider the
partial ¢g-derivatives of K, (z,y) we will use the following notation:

Zl (Do ) (@) (P ) (9)

A5 (,y) =

q,n

The last result we present in this section is a generalization of the reproducing property of the
kernel.

Let m(z) be a polynomial of degree n — 1, it can be written in terms of elements of the
polynomial sequence (py),,, i.e.,

:i u, Tz) P )>pk:(93)-

7pk;>
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Thus, we have
n—1
(Fym) = X BT 0.
k=0 uapk>

Then, using the fact that

1

(u,

n

(@) (Z]p1) ()
(u,p?)

(w, 09 (@, y)m(x))

) q,n

m(x))

B
Il
- o

n—

T ) ),

el
I
o

we obtain the identity
(w, 25 (@, y)m (@) = (Z],,) (W)
Observe that for j = 0 one has the reproducing property of the kernel, i.e.,

<u7 Kn(x7 y)ﬂ($)> = 7T(y)

We also need to introduce the following result (see [?, Lemma 1] or [?, Lemma 3]) about the
behaviour of the zeros of a polynomial f(x) = h,(z) + cg,(x), that is a linear combination of

two polynomials of the same degree.

Lemma 1. Let hy(z) = H(x — x1) - (x — x,) and gn(z) = Gz — 1)+ (& — yn) be two

polynomials with real and simple zeros, with H,G > 0. If

N <2 << Yp < Tp,

then, for any ¢ > 0, the polynomial f(x) = hyp(x)+cgn(z) has n real zeros, namely n < -+ < 1y,

which interlace with the zeros of hy(x) and g, (x) as follows

N<m<zy < < Yp <Np < Tp.

Moreover, each ni, = ni(c) is a decreasing function of ¢ and, for each k =1,... ,n, we have

—hn (Yi)

lim ng(c) =y and lim c(ng(c) —yx) = .
« A, enle) =3) =g

c—00

3 The discrete Sobolev-type polynomials

We start this section introducing the Sobolev-type inner product

(frg9)s = (u, fg) + N(Z,f)(a)(Z49)(a), N, eR.

We denote by (s%a)(N ,:U)) the sequence of monic polynomials, orthogonal with respect to

3)

the inner product (??). These polynomials are said to be basic hypergeometric-Sobolev-type

orthogonal polynomials.
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3.1 Connection formula

In this section we first express the discrete Sobolev-type polynomials (sﬁf“)(N ; 33)) in terms of

the standard orthogonal polynomials (p,) and the kernel polynomials and its corresponding
derivatives. Taking into account the Fourier expansion, i.e.,

n—1
SO(N12) = pul@) + 3 anspr(@).
k=0

Then, from the properties of orthogonality of (p,),, and <s£§‘)(N : x)) respectively, we have
n

(w, sy (N3 2)pi(@)) N (Zgsi)(IV; 0)(Zgpi) (@)

ank = = , 0<k<n-1.
(u,p?) (u,p?)
Thus we deduce
SNy 2) = pu(@) — N(Zgs\)(N; ) 25D (@, a). (4)

Remark 2. Observe that sga) (N;z) = p1(z).

From here, and after some basic manipulations, one gets

(a5 (N; @) = (Zapn) (@) = N(Zys0) (N3 @) o (o, ),

q7n

Therefore

(945§ (Vi) = — Tl
1+ N%fn’ )(a, @)

so from (??) one has

N(@pa)(@)

((N; @) = pol@) —
Sn ?x pTL x
1+ Ny (@, q)

Remark 3. From now on we denote —(ZaPn)(@) by €.

1+N,%%’1)(a,a)
Finally taking into account the identity

<@q f >(x)_(9qf)(w)_ (@)

r—a« qr — (x — a)(qgr — a)’

one gets

O (5 ) = Pn(®)pr—1(a) = po—1(z)pn(a)
Hon @) = T P e —a) (e — qa)

o Pn(@)(Zgpn-1)(@) = pn1(2)(Zgpn) ()

it & — gc) )
With this, and by using expression (?7), one obtains
S(a) ) — z) — Cn pn(x)pn—l(a) - pn—l(x)pn(a)
AR P ( @ —a)@ —qa)
+pn<x>@qpn-l><é>_—$)_1<x><@qpn>(a)). @
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Since the expression (?7) is a rational function in NV, where both the numerator and denominator
has the same degree as N, it is clear that we can define the monic polynomial of degree n which
results on taking the limit N — oco. In fact, we obtain

: Dqpn)(a)
K@) = lim s (Vi) = o) - ) pon (g o) ®
e Han (@)
To characterize these new polynomials, first we observe that they are strictly quasi-orthogonal
of order 2 with respect to the linear functional
v =(z — a)(x — qa)u,
therefore, 7’7(1&) (x) is a linear combination of three consecutive polynomials of the sequence (p,,),

i.e., for n > 2, we have

)

7'7(1 (z) = pn(x) + bgnpn—1(T) + cgnpn—2(z),

where

o= @ @ps(a) _ (Zipn)@)

<u’p72172> ‘%7n(a7a)

3.2 Distribution of the zeros

Let (1,k)5_, be the zeros of s (N;x) and (x,1);_, be the zeros of p,(x). Then the following

result holds.

Proposition 2. ([?], Proposition 6.2) The polynomial 7‘7(1@)(1') has n real and simple zeros,

namely (Yn k) p_; -
Moreover, if a < supp(u), then

Un,l <A< Tp1 <Yp2 < Tp2<- - <Ynn < Tnn,
and if o > supp(u), then

Tnl <Ynl < Tnp2 < " <Ypn-1<ZTnpn < &<Ypn,
hold for everyn > 2.

In order to obtain some results concerning monotonicity, asymptotics, and speed of
convergence for the zeros in terms of the mass N applying Lemma ??7 we believe that is more
convenient to normalize the connection formula (??) in this useful way:

Proposition 3. For this polynomial sequence the following identity holds:
(14 N (0,0)) s (N3 2) = pu(e) + NALD (@, 0)rie) (@), (9)

We leave the proof to the reader, it is just enough to replace (??) in (??) and after some
basic manipulations one gets the desired identity.

We point out the fact the basic hypergeometric-Sobolev-type orthogonal polynomials
57({1)(]\7 ;x) appears as a linear combination of two polynomials of degree n. Thus, from (?7?),
Proposition 7?7, and Lemma 77, we immediately conclude that the mass point o does not attract
any zero of sﬁf“)(N ;x) when N — oo, as in the standard case. By standard we mean the case of
the polynomials orthogonal with respect to the inner product (??) (see [?]).

Moreover, it is well-known that the polynomial p,(z) has n different real zeros and since we
assumed that the interval (a, gar) contains no points of the spectrum of u, it follows that at most
one zero of p,(x) is situated in [a, ga]. For the polynomials 57({1)(]\7 ;) we have the following
result.
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Proposition 4. If n > 3 the polynomial sﬁf“) (N;x) has at least n — 2 different real zeros with

odd multiplicity.

Proof. Let n,1,7n,2, - ,nk denote the real zeros of s%a)(N; x) of odd multiplicity. Put II(x) =

(€ —nn1) - (x — nnk) We have
(s (N3 2), (2 = @) (@ — qa)Tl(z))s = (u, s (N3 2)(2 — ) (@ — ga)lI(x)) > 0.
Hence degll > n — 2. -
()

The position of the real zeros of s, ' (N;x) can be localized by the following theorem.

Theorem 1. Suppose (Zypn)(a) =0, N > 0. Let k denote the intersection with the real azis
of the chord which joins the points (o, pp(cr)) and (qa, pn(qa)).

1. If k & [@n i, Tniv1] and @y, Tniv1 € (o, qal, then (zp;, Tnit1) contains at least one zero
(@) [ A7
of sn ' (N;x).

2. If there exists a unique 0 < i < n such that o < x,; < qo, then also o < k < gae and we
have one of the following cases:

(a) If a« < k < xp; < qov then (zp-1,%n;) contains at least one zero of s%a)(N;m).
(b) If o« < xp; < k < g then (xy, Tpnit1) contains at least one zero of s%a)(N;a:).

The proof of this result is analogue to the one presented in [?, Theorem 3.2] so we leave it to
the reader.

Remark 4. Notice that depending on the sign of a the interval changes but the result is clear
in both cases o > 0 and o < 0.

Corollary 1. The position of at least n — 2 zeros of s%a)(N; x) can be localized.
Proof. We consider different cases:

e If [, o] does not contain a zero of p,(x), since z,; # « for all i, then for at least n — 2
intervals (24, Znit1) part 1. of Theorem ?? can be applied.

o If (a,qa) contains a zero of p,(z) (more than one is impossible), then n — 3 zeros of
sgla)(N ;) can be localized by the first part of Theorem ?? and one by the second part.

Hence the result follows. [ |

3.3 The five-term recurrence relation

Since the inner product (??) does not satisfy the Hankel property , i.e.,

<1"f7g>5 = <faxg>Sa
the polynomial sequence <s§f‘> (N; x)) does not fulfil a three-term recurrence relation. However,
we find that "

((x — a)(x — aq)p,m)s = (p, (x — a)(x — aq)r)s, p,r € P.

Let us state the first result which is a direct consequence of this fact.
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Proposition 5. The following identity holds for n > 2:

n+2
(r —a)(z — aq)sgf‘)(N; x) = Z an,upy (), (10)
v=n—2

where ayni2 =1, and

anpnt+l1 = (5n+1 + ﬁn - 04(1 + Q)) - (gqpn—l) (04)7

<u7p721—1>
Ann = (’7n+1 + 9+ (Bryr — aq)(Bn — a)))
—mf’;ﬁ(pnl(a) — (Dapn) (@) + (B — @) (Zapor) (@),

n

Ann—1 = Tn (571 + Bn-1— a(l + Q)) -+ > (pn(a) —Tn (@qpn—l) (04)

<u,pi_1

+(Bn-1 — @) (Zgpn) (@),

Gn
ann—2 = TnYn—1 + ﬁ (@qpn) (O[)

yPn—1

Indeed, one can obtain all the coefficients of (??) by using the three-term recurrence relation
of (Pn)n

2P () = pn+1(2) + Bapn(z) + Ynpn-1(2),

with initial conditions p_;(x) = 0, po(z) = 1, the expression (?7?), the identity
any (0, p}) = (s (N 2), (2 — a)(x — ag)py)s, v =0,1,....n+2,

and using the expansion of (x — a)(x — aq)p,(x), i.e.

(z — a)(z — aq)pn(z) = pn2(z) + (571-1—1 + Bn —a(l + q))pn+1(a?) + ('Y?H-l +Yn
+(Bnt1 — @q)(Bn — @) pn(2) + Y0 (Bn + Ba1 — (1 + q)) pp—1(z)
+YnVYn—1Pn—2.

We now derive a recurrence relation for the polynomials s (N;x).

Proposition 6. (Five-term recurrence relation)
The following recurrence Relation holds for n > 2:

n+2
(= a)(z —ag)s (N;z) = > Auusi™(N;2), (11)
v=n—2
where Ap py2 = 1, and
. j+2
asn(0,72) (14 NAG D (,0)) + N (Zgpn) (@) D a5 (a)
)\n7j _ i=n+1 :

(14 N (a, ))IS5112
where

1+ N (o)

14 N (@, )

1513 == (S, Su)s = (s5 (N5 2), i (N3 ) (u,py).
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The proof of this result is analogous to the one of the Proposition 3.1 in [?].
Remark 5. Notice that after basic manipulations of (??)we get

S 2
Az = A0Sy 1Sl2 = AsrnllSal2
HSn—2HS

Observe that this result is direct after some straightforward calculations.

3.4 The second order linear ¢-difference holonomic equation

In the following we assume that u is a classical g-discrete functional. Let ®(z) denote the
polynomial (x — «)(z — aq). From the expression (??7) we get

O (z)s{ (N3 2) = A(x; n)pa(@) + B(a; n)pn1(2), (12)

where A(x;n) and B(x;n) are polynomials of degree bounded by a number independent of n and
at most 2 and 1, respectively. On the other hand, since u is a classical linear functional, then
there exist a polynomial ¥(z) and two polynomials M (z;n) and N(x;n), with degree bounded
by a number independent of n, such that

V() (Dgpn)(x) = M (2;1)pn(x) + N(250)pn—1(2). (13)
Using (??7) and (??) we obtain the following representation formula:
m(2)si) (N 2) = a(w; n)pa(x) + b(w;n)pa(gz), (14)

where a, b and 7 are polynomials of degree bounded by a number independent of n. With all
these expressions we can formulate the result.

Theorem 2. Let u be a classical linear functional. Suppose that the polynomials (s,(la) (N;:L"))

are defined by (?7?7) where the polynomial py, is a solution of a second order linear q-difference
holonomic equation, q-SODE in short, of the form

o(z;n)pn(q ") — e(x;n)pn(x) + (23 n)pn(qz) = 0. (15)

Then (sga)(N; x)) satisfy a q-SODE of the form

o(x; n)sna)(N; ¢ lz) — @(z; n)sq(f“)(N; z) + C(x; n)sgf“)(N; qx) =0, (16)
where G, @ and ¢ can be computed explicitly.

A completely analogous proof is given in [?, §3.2] so it will be omitted.

Remark 6. It is clear that after some manipulations one can obtain some lowering and raising
operators, namely af and a. In fact such operators can be written as follows:

of = o (e:m) 2y + E(@n)a, 0= Blain) Ty + F(win)ly,

where I; represents the identity operator.
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4 The examples

4.1 The Al-Salam-Carlitz I polynomials

The Al-Salam-Carlitz I polynomials, ASCI in short, U,S“) (x; q) were introduced in [?] by Al-Salam
and Carlitz (1965) and they are defined via basic hypergeometric series as [?]

U (x59) = (—a)" ¢(2) o0y (a7, 271 0;q,a  qz) . (17)
Proposition 7. For this polynomial sequence the following identity holds:

1. Orthogonality relation. For a <0

1
/ U (a3 ) U (25 q) (g, a g q) gz = || US| Sy

a

where by 6; j we denote the Kronecker delta function.

2. Squared norm.

n

U@ = (1 - ¢) (—a)" a3 (459),, (0,00 a54) -
3. The Three-Term Recurrence Relation. For n > 0,
U, (59) = (z— (a+1)g") UL (25 9) + ag" (1—¢") UL, (23 ), (18)
with initial conditions Uéa) (r;q) =1, and Uﬁ“l) (x;q) =0.

4. Forward Shift Operator.
(2,U057) (w5 q) = n], UL, (w5 q). (19)

4.1.1 Connection formula and hypergeometric representation

We can express the ASCI-Sobolev-type polynomials (Una’a) (N;x; q)> in terms of the ASCI the
associated Kernel polynomials. In fact, by construction, we have

N{nlyUp, (o)
L+ Nt (,0)

UL (N;23.9) = UL (5 q) - KD (w, ). (20)

q,n
And by using (?7) and (??) we obtain

UL (N3 23.0) = (@)U (230) + Ba(@)UL, (w3.0),

where
Ninl UL, (esa) (U (a5 ) + (@ = a)ln = 1,0, (a3.0))
Ap(z)=1- @ 12 ) ;
|02 * @ = o) — aq) (1 + NAGw (0, a)
and
Nn],U, (s q) (UTS“) (a3 ) + (x — ) [n]gUY; (o q))
By (z) =

[0S (@ = o) — aq) (1+ VA (0 0)
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Thus, taking into account (??) as well as the identity

(¢'""q), = ﬁ (In =11, = Ik =11,) (a7 a),. 2

we deduce

Uéa’a)(N; x5q) = — (fa)"*l q(g)_”"‘?iBn(aj)

[n],
S o) @k @)y
" ;::()([]~C Ha Ol )> (@9 (e aw)"
where
B aq"? [n], An(z)
@n(fﬂ) - Bn(fL‘) - [77, - 1]q :
In addition, we have
B o= L@t (en(@)iq)y
b= 1+ Onle) = en(2) (1= q) (pn(x)a0); 22
where
1
) = T g, +1
Consequently
)1 —pp(x)gt
U\ (N2 q) = —(—a)n_lq(;)_n+2 B[:l%q) Ln(ff((l )_qq)
(0 (715 9), (0n(2);9), (0 qa)*
g kZ::O en(2)a 5 )y, ()

Thus we have proven the following identity for the ASCI-Sobolev-type polynomial.

Theorem 3. The ASCI-Sobolev-type polynomial has the following hypergeometric representa-
tion:

2 Bu(@)(1 = pn(w)g)gls) 2
a[n]gpn(z)(1 - q)
X 302 (qin,xil,@n(x);oa@n(ﬁ)qfl;q’ a,qu) (23)

U (N;x;q) = (—a)

4.1.2 Distribution of the zeros

Our main aim in this Section is to study the location as well as to obtain results concerning
the monotonicity and speed of convergence of the zeros of the ASCI-Sobolev-type polynomial
U}f’a) (N;x;q). For this purpose we use Lemma ?77.

Lemma 2. The polynomial %Eg’l) (z,a) has n — 1 real and simple zeros which interlace with

the zeros of U@ (z;q).

The proof is straightforward by applying [?, Lemma 1.1] to the expression (??) and we leave
it to the reader.
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Theorem 4. Taking into account the identity (??). For any o € R, with o ¢ [a,1] and for
any N > 0 the zeros of Uéa’a)(Nm;q), ,Sa) (z) and 1“7({1’0‘) (z;q) fulfil the following interlacing
relations:

o Ifa<a then
Un,l <Mnl < Tl <Yn2 <2 < Tp2 < <UYnn <Mhn < Tnn-

Moreover, each zero n, 1 is a decreasing function in N, i.e., Ny 5 = nnk(N); and, for each
k=2,....n

lim 7,1(N) = «, Im 7, 5(N) = Yn,
N—o0 N—o0
and

—US (415 9)
(rf{"a) (25 q))/

}mzyn,k

lim N (1, (V) =y ) =

N—oo

o [fa>1 then
Tnl <Mnl <Ynl < Tn2 < M2 <Yn2 < < Tpn <Mnn < Ynn-
Moreover, each zero n, i is an increasing function in N; and, for each k =1,...,n —1
lim nn,k(N) = Yn,k» lim nn,n(N) = «,
N—o0 N—o0
and

~U (Y1 @)
(rﬁf’a) (25 q))/}

]\}gnoo N(nn,k(N) - yn,k) =
T=Yn k

Notice that the mass point « attracts one zero of (77), i.e. when N — oo, it captures either
the smallest or the largest zero, according to the location of the point a with respect to [a, 1].
When either v < @ or a > 1, at most one of the zeros of (??) is located outside of [a, 1]. Next,

we give explicitly the value Ny of the mass N, such that for N > Ny one of the zeros is located
outside [a, 1].

Corollary 2. If o ¢ [a, 1], the following statements hold:
i.) if o < a, then the smallest zero nn,1 = np1 () satisfies

Mn,1 > Q, for N < Ny,
T = a, for N = No,
Mn1 < a, for N > N,

where Ny = No(a,n, q, o) with

(a) -

U ;

Ny = Wﬁ/(oﬂ(a, a) = A0 (@,a) | >0
Lna ((I; Q) 7
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ii.) if o > 1, then the largest zero My = Npn(a) satisfies

M < 1, for N < N,
M = 1, for N = Ny,
NMnn > 1, for N > N,

with

~1

U(a) :

g e Gl K
U (1g) " ’

Proof. It suffices to use (?77?) together with the fact that UA“’“) (N;7;q9) =0, with 7 = a, 1, if

and only if N = Ny

No A (a;q)

U (N;730) = UL (159) —
1+ NoAgn (a,0)

A0 (7 a) = 0.

q,n

Thus
UT(La) (7_7 q) _ No UT(La) (a; Q) %(2,1) (7_’ Oé) )
1+ Nogw (a,0) "
Therefore
(a) -t
No = Nofa,m,g,0) = (Wﬂf}%l)(a ) - :%;%’”(a,a)) .
U (m5q) ’

Notice that, according to the well-known theorem of Hurwitz (see [?, ?]), for n large enough,
only one zero of (?77?) is located outside of [a, 1] and it is attracted by . Next we show some
numerical experiments using Wolfram Mathematica software, dealing with the smallest and the
largest zero of (7?). We are interested to show the location and behaviour of these zeros.

In the first two tables we show the position for the first and last zero of (??) of degree n = 20,
a = —1 and ¢ = 1/2, for some choices of the mass N. Indeed, this case is connected to the
discrete g—Hermite polynomials [?]. For N = 0 obviously we recover the first zero and the last
zero of (77). When the mass point is located at o = —75 < a, then Ny = 3.12758 x 1071?8; and
when it is located at o = 72 > 1, then Ny = 1.41561 x 107127 we obtain

N 70x107120 70x10718 70x10°16 70x 1011
1201 —63.6640 —74.8668 —74.9987 —75.0001
120,20 40.5829 71.447 71.9945 72.

The next table shows the smallest and largest zeroes in the case when we set n = 11 and
a = —5, and the mass point is located at o = —42 (Ny = 8.84157 x 107%!) and at a = 45
(No = 6.30851 x 10~4!) respectively

N 70x103 7.0x103% 7.0x10732 7.0x 1030
IR —25.9916  —41.7589  —42.0138  —42.0164
M1 41.4986 44.9875 45.0253 45.0257

In the next tables we provide numerical evidences in support of Corollary ??, where the exact
values of Ny are calculated for the a = —1 case. For this purpose we begin by analyzing the
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smallest zero of (??) of degree n = 14, ¢ = 1/2, and with the mass point located at « = —3. In
this case we have that Ny = No(—3,14,1/2) = 5.13942 x 10~%!. Thus

N  50x107% Ny(=3,14,1/2) 50x10~% 5.0x 10~
na1  —0.9999 —1.0000 —2.8906 —3.0001

Finally, for the case where the mass point is located at a = 21, we have Ny (21,14,1/2) =
4.03796 x 10752 and

N  60x107% Ny(21,14,1/2) 6.0 x 107> 6.0 x 10~°°
Maia  0.9999 1.0000 20.7490 21.0013

4.2 The Stieltjes—Wigert polynomials

The (monic) Stieltjes—Wigert polynomials, SW in short, S,(z;q) are defined via basic
hypergeometric series as [?]

Su(w3q) == (=1)"¢ " 161 (475 0;q, —¢" ') .

The moment problem for the SW polynomials is indeterminate; in other words, there are many
different measures giving the same family of orthogonal polynomials (Krein’s condition, see e.g.

7]).
Proposition 8. For this polynomial sequence the following identities hold:
1. Orthogonality relation

/OOO S (x5 q)Sn(x;q) e

(—z,—qr~1q)

= [|1Sull*Gm,n-
oo

2. Squared Norm.
19a]1 = =g~ "™V (g 9)oo (g5 9)n Tog -
3. The recurrence relation. For n > 0,
Snii(z:0) = (x = ¢ (14— ¢"))Sn(@39) — ¢ (1~ ¢")Sn-1(w39),
with initial conditions So(x;q) =1, and S_1(x;q) = 0.
4. Forward shift operator
(Z45n) (x39) = ¢ V[nlySn-1(2¢%; ).
4.3 Connection formula and hypergeometric representation

We denote by <ST(LQ) (N; x; q)> the sequence of monic polynomials orthogonal with respect to the
inner product

(f.g)s == /0 " f@)g(e) : i

—2, —qr7 15 q)oo

+ N (Z4f) (@) (Z49) (@)

These polynomials are connected with the Stieltjes—Wigert polynomials by the formula

_ N(‘@qsn)(o‘) %(2’1)(1', a)_ (24)
1+ N (o) "

S (N;x;q) = Sn(z;q)

Next, using the same idea than with the another example and by using the identities (?7) and
(?7), we get the following result.
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Theorem 5. The SW-Sobolev-type polynomial has the following hypergeometric representation

By (2)(1 = pn(z)g™")

S (N )= (4 @)n(g™™ — 1)

202 (47" pn(2); 0, on(z)g 3¢, —¢"2) ,

where, in this case,

pute) = BRIl 1)

4.3.1 Distribution of the zeros

As in the previous example our main aim, again, in this Section is to study the location as well
as to obtain results concerning the monotonicity and speed of convergence of the zeros of the
Stieltjes—Wigert-Sobolev-type polynomial, S,(La) (N;z;q).

Notice that, when o € R, with o < 0, at most one of the zeros of ST(LQ) (N;x;q) is located
outside [0,00). Next we provide the explicit value Ny of the mass such that for N > Ny this
situation appears, i.e, one of the zeros is located outside [0, 00).

Theorem 6. Taking into account the identity (?7). For any o € R, with a < 0 and for any

N > 0 the zeros of S,(LO‘)(N;m; q), Sn(z;q) and 7"7(10‘) (x;q) fulfil the following interlacing relations:
Un,l <Mn,l < Tnl <Yn2 <Mn2 < Tp2 < < Ynn < Mnn < Tnn-

Moreover, each zero mpj is a decreasing function in N, i.e., Ny = N k(N); and, for each

k=2....n

lim nn,l(N) =, lim nn,k(N) = Yn,k,
N—oo N—oo

and
—Sn (yn,k; Q)

(rff) (3 q))/

‘x:yn,k

lim N (30,6(N) =y ) =

N—o0

Corollary 3. If o € R, with oo < 0, then the smallest zero 1,1 = np1() satisfies

Mn,1 > 0, for N < Ny,
Mot = 0, for N = No,
M1 < 0, for N > Ny,

where
DqSn(e; q)
Sn(0;q)
The proof of this result is analogue to the previous example so we leave it to the reader. The
numerical behaviour of the zeros for this family is very similar to the Al-Salam-Carlitz case,

hence we are going to show here how changes the smallest zero of degree n = 14 when o = —1
for some real values of 0 < ¢ <1 going to 1.

—1
No = Nofan,a) = A0.0) - A 0,)) >

qg No(21,14,1/2) N 107°N; Ny 10°Ng 10N,
0.5 0.2717 Mmaa  1.2482  0.0000 —3.2380 —3.2381
0.8 295394 x 107® may  0.5574  0.0000 —1.4878 —1.4878
0.9 8.29261 x 10717 41 0.4657 0.0000 —1.2625 —1.2625
0.99 1.42958 x 10797 141 0.6206 0.0000 —1.1597 —1.1597
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