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Abstract. We derive a generalization of the Rogers generating function for the continuous
g-ultraspherical /Rogers polynomials whose coefficient is a 2¢1. From that expansion, we de-
rive corresponding specialization and limit transition expansions for continuous g-Hermite,
continuous ¢-Legendre, Laguerre, and Chebyshev polynomials of the first kind. Using a
recent generalized expansion of the Rogers generating function in terms of Askey-Wilson
polynomials by Ismail & Simeonov whose coefficient is a g¢7, we derive corresponding gen-
eralized expansions for Wilson, continuous ¢-Jacobi, and Jacobi polynomials. By comparing
the coefficients of the Askey-Wilson expansion to our continuous g-ultraspherical/Rogers
expansion, we derive a new quadratic transformation for basic hypergeometric functions
which relates an g¢7 to a 2¢1. We also obtain several definite integral representations which
correspond to the above mentioned expansions through the use of orthogonality.

Key words: Basic hypergeometric series; Basic hypergeometric orthogonal polynomials;
Generating functions; Connection coefficients; Eigenfunction expansions; Definite integrals.

2010 Mathematics Subject Classification: 33C45, 05A15, 33C20, 34110, 30E20

1 Introduction

In the context of generalized hypergeometric orthogonal polynomials, the first author and col-
laborators developed in [1, (2.1)] a series rearrangement technique which we utilize in the
present context to produce a generalization of the generating function for the continuous g-
ultraspherical /Rogers polynomials. This technique is valid for a larger class of hypergeometric
orthogonal polynomials. For instance, in [3], we applied this same technique to the Jacobi poly-
nomials and in [0], we extended this technique to many generating functions for the Jacobi,
Gegenbauer, Laguerre, and Wilson polynomials.

The series rearrangement technique combines a connection relation with a generating func-
tion, resulting in a series with multiple sums. The order of summations are then rearranged
and the result often simplifies to produce a generalized generating function whose coefficients
are given in terms of generalized or basic hypergeometric functions. This technique is especially
productive when using connection relations with one free parameter, since the relation is most
often a product of Pochhammer or ¢-Pochhammer symbols.

Basic hypergeometric orthogonal polynomials with more than one free parameter, such as the
Askey-Wilson polynomials, have multi-parameter connection relations. These connection rela-
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tions are given by single or multiple summation expressions. For the Askey-Wilson polynomials,
the connection relation with four free parameters is given as a basic double hypergeometric series.
The fact that the four free parameter connection coefficient for the Askey-Wilson polynomials
is given by a double sum was known to Askey and Wilson as far back as 1985 (see [20, Section
16.4]). When our series rearrangement technique is applied to cases with more than one free pa-
rameter, the resulting coefficients of the generalized generating function are rarely given in terms
of a basic hypergeometric series. The more general problem of generalized generating functions
with more than one free parameter requires the theory of multiple basic hypergeometric series
and is not treated in this paper.

Through analysis of an Askey-Wilson polynomial expansion due to Ismail & Simeonov [19],
we construct expansions for the Wilson polynomials (Section ?7?), the continuous g-Jacobi poly-
nomials (Section 4), and the continuous g-ultraspherical/Rogers polynomials and some special-
izations and limit transitions of that expansion (Section 5). In that same section we also derive
a new quadratic transformation for basic hypergeometric functions. In Section 6, we have also
computed new definite integrals corresponding to our generalized generating function expansions
using orthogonality for the orthogonal polynomials we have studied.

In addition of being of independent interest, this investigation was motivated by an applica-
tion of generalized generating functions in the non-q regime [3, 4]. This would be the generation
of ¢g-polyspherical addition theorems in terms of a product of ¢g-zonal harmonics. In order to
compute these g-analogues, one would need to derive a g-analogue of the addition theorem for

the hyperspherical harmonics (see [30]; see also [9, Section 10.2.1])
d_q ( % K
Cy  (cosvy) = Y,
@ (cos7) (2n+d— 2 Z VER),

where, for a given value of n € Ny := {0, 1,2,...}, Cl is the Gegenbauer polynomial, K stands for
a set of (d—2)-quantum numbers identifying normalized hyperspherical harmonics Y,X : §4=1 —
C, and 7 is the separation angle between two arbitrary vectors x,x’ € R% The Gegenbauer
polynomials which can be defined using the Gauss hypergeometric function [7, (18.5.9)], and in

terms of the Jacobi polynomial P,(La’ﬂ), (21, (9.8.19)],
2 -n, 2 1-— 2 _1 1
Cata) = Py (T2 ASE) - B b (11 gensaeans
! 5 n

One would also need g-analogues of a fundamental solution of the polyharmonic equation, and
Laplace’s expansion

1 s rl< 4
= Z Cp (cos
fx—x[2 £y (cos),

which is the ¢ 1 17 limit of the generating function for the continuous g-ultraspherical /Rogers
polynomials, hereafter referred to as the Rogers generating function (see (3.3) below). These
analogues do not exist in the literature, however they may be found by using material from
[12], [16], [24, Section 3], which we will attempt in future publications. Addition theorems for
continuous g-ultraspherical/Rogers polynomials should also be useful here [23].

2 Preliminaries

Throughout the paper, we adopt the following notation to indicate sequential positive and
negative elements, in a list of elements, namely

+a = {a,—a}.
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If the symbol + appears in an expression, but not in a list, it is to be treated as normal.

In order to obtain our derived identities, we rely on properties of the Pochhammer and ¢-
Pochhammer symbols, also called shifted and g-shifted factorials respectively. The Pochhammer
symbol for a,b € C, £b > 0 is defined naturally by

I'(a+0b)

(a)p := T(a)

where a +b ¢ —Np, and if Rb < 0 then (a), := 1/(a + b)_p. For the g-Pochhammer symbol,
a € C, |q| <1, define

(6; @)oo = [ (1 — ag™), (2.1)[2:2]
n=0

then for b € C, [21, (1.8.9)]
0~ ot e

where the principal value of ¢° will always be taken and (aq’;q)s # 0. Therefore for n € Ny,
one has [21, (1.8.8)]

(a3 Q) = <(a;q)oo (2.3)31

aq"; @)oo’
where (ag"; q)oo 7 0. We will also use the common notational product conventions
(a1, ak)p = (a1)y -~ (ar o,
(a1, ar; @) = (a1;9)y - - - (ar; Q).

We define the g-factorial as [10, (1.2.44)]

where the g-number is defined as [21, (1.8.1)]

1—¢*
[z]qzzl_q, z e C.

Note that [n]q! = (¢;q)n/(1 — q)"

The following properties for the g-Pochhammer symbol can be found in Koekoek et al. (2010)
[21, (1.8.7), (1.8.10-11), (1.8.14), (1.8.19), (1.8.21-22)], namely for appropriate values of a and
n, k € Ny,

(@ @ntr = (@ @)i(ag®; @)n = (a3 @)n(aq"; )1, (2.4)[2:3]
(a®;¢*)n = (£a; @)n. (2.5)[2:4]
Observe that by using (2.3) and (2.5), we get
n +Va, £/aq; ¢)n
(aq";q)n = ( (a‘;)ﬁ ) . (2.6)[2:5]

Lemma 2.1. Letn € Ny, q,a,b € C, 0 < |q| < 1. Then

(@; Qntv = (a50)n(aq™; @) (2.7)
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Proof. Follows from the identity (2.2) and (2.3). |

Lemma 2.2. Let q,a,b€ C, 0 < |gq| < 1. Then
(g%
lim =
at1= (1 —q)? (@)
Proof. Define the g-gamma function I'y by [21, (1.9.1)]

(1-9)'""(¢; 9o
(4% @)oo

(2.8)[2:8

Ly(z) ==
and the arbitrary ¢g-Pochhammer symbol by (2.2). Observe that, by using (2.7), if b < 0 then

(a;q)p == ( ! (2.9)[2:9]

e If a +b € —Nj then the result is straightforward by definition since (—n), = 0 and
(g™ q)n, = 0 for any n € Ny.

o If b > 0 then

a. a. F b
i 7Q)bb 5 (qb,cJ)oZ _ iy Lala+b)
1= (1—=¢q)°  gt1- (1 = q)°(q*™ @) 1= Ty(a)

= (a)sp,

since [21, Section 1.9] limg - I'y(x) = I'(x).
o If ®b < 0 then

a. 50 _\—b _ \N—b(,a.
(@ 9) @9 . (1—q) (1-9)(¢" Do _ .. Tala+b)

lim = = lim =(a)p.
- (1=q)®  ati= (@*5q)p a1 (@) qt1=  Tg(a) (@)
This completes the proof. |
We also take advantage of the g-binomial theorem [21, (1.11.1)]
ol “rae) = (T <, 210)z10
- (Z; Q)oo

where we have used (2.1). The basic hypergeometric series, which we often use, is defined as
[21, (1.10.1)]

oo
at, ..., 0ar (a17-"7ar§q)k ( k (k)>1+877‘ k
nre 45 % ::Z —1)%q'2 2" 2.11)[2:11
¢ < bi,...,bs 1 ) Pt (q,b1,.-.,bs;9)k (=1)%q ( )[2:11]

Let us prove some inequalities that we later use.

Lemma 2.3. Let jeN, k,n €Ny, z€ C, Ru>0,v >0, and 0 < |g| < 1. Then

D] > i - 1, (212)2:22
5] < g, 213) 218
vk, n v+1
| < [[é;(i]ﬁq 21z
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Proof. If 0 < |g| < 1 then
j—1

This completes the proof of (2.12). Choose m € Ny such that m < u < m+1. Then ¢™*! < g%,
SO

u+k—1 k

1—g¢q
1—g¢q

1—gq

>
1—g¢q -

> |[R(u)]gls = 1!l

1—q"
1—g¢q

u+k m+k

1—gq
1— gk

1—gq
17q1+k

-1I

k=1

.

k=1

k=0

‘(q“;q)n < |+ 17| < |ln+1]Y].

(@ Dn

1—qgk
This completes the proof of (2.13). Without loss of generality we assume u > 0. If v < u then

the inequality is clear, so let us assume that 0 < u < v. Since 0 < |g| < 1 and for ¢t > 0,

t+wv <E’
t+u — u

and we have

1 (@”)n

| [ulg [n = g!(1 = g)

Choose m € N so that m — 1 < v < m. Then

< ‘ (¢°)n

@5 )n| _ | 1 lg(@™@n| | 1 [0lg(¢"@)m L et o | L e
o < o = | <o+ 7 < e
This completes the proof of (2.14). [ |

As we have mentioned previously, we need to assure that one can rearrange certain series
expressions. The following result is necessary in order guarantee the validity of such actions. If
an infinite series is absolutely convergent then all of its rearrangements converge to the same
sum.

lem:1111 . . .
(Lem >Lemma 2.4. Let n,k € Ny, a, b, be sets of parameters associated with polynomial sequences

(pn) and (py). Furthermore, assume that the polynomial sequences satisfy the following identities

Dn( chnab pr(z;b), Zan a)py(z;a) = F(x,a),
k=0

for some coefficients an,cr, € C. Then one can justify the rearrangement of the two series as

Zan(a)zckn(abpkﬂf b) Zpk (x;b) Zan )ckn(a,b),
n=0 k=0

if one can verify

Z |an(a)| Z‘Clﬁ,n(av b)pk(l’; b)‘ <0
n=0

k=0
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3 Expansions for Askey-Wilson and Wilson polynomials

1sonexpansions) The Agkey-Wilson polynomials can be defined as [21, (14.1.1)]
¢ " arazazasq™ ", are, are”"
14,9 |

pn(z;alg) == a; " (ar1a2, a1a3, a1a4; q)n 4¢3<
aiaz,a1as, a4

where x = cos 6, a := {a1,a2,a3,a4}. In [19, Theorem 4.2] the following Askey-Wilson polyno-
mial expansion of the Rogers generating function [21, (14.10.27)] is proven.

Theorem 3.1 (Ismail & Simeonov (2015)). Let t,3,q € C, max{|a1|, |a2|, |as|, |a4l,|t], |q|} <1,
x =cosf € (—1,1). Then

tBe” tBe 1 q -
( =T L > cn(B,t.a;q)pa(; alg), (3.1)[3:15]
(te, te™ % q)os =
where
cn (57 t, a; q) — tn (57 Q)n(qnalﬂt7 anLZ,Bt, qna,gﬁt7 q”alagagt; q)oo ngta;q,

(g, q" tarazasaq; q)n(ait, ast, ast, ¢*"ajaza36t; q)so

1 1 _
. ¥ Larasasft, £¢" 2 (a1a2a3Pt) 2, ¢"araz, ¢"ara3, ¢ asas, ftay ', q" B
Foitaq . .
n = g¢r i q, agl

g2 (ala2a35t)%, q"a1Bt, q"azft, ¢"asft, ¢*rarazazay, qharazxast
= sWr(q®" tarazasft; ¢"aras, ¢"ara3, ¢"azas, Btay’, q" B; ¢, ast),

and [10, (2.1.11)]

1
alvj:qa'127a47- -+, 0asg
8W7(a1; a4,...,0854, Z) = g¢7 % s q,z2 ], (3.2)‘Verywellpoised8w7
taj,qa1/ay, ..., qa1/ag

defines the very-well poised hypergeometric series sWr.
(Thm4it)

Remark 3.2. Note (5.1) is a generalization of the Rogers generating function (the generating
function where the coefficient multiplying t™ is unity) [21, (14.10.27)]

tBe” tBe " Q)oe  ~ n
((tew teio.q)) = Culx; Blg)t", = cosd, (3.3)[2:22]
’ 14/00 n=0

where Cy(x; B|q) is the continuous q-ultraspherical/Rogers polynomial (see Section 5 below).

Remark 3.3. Note that to compute such basic hypergeometric functions, it is convenient to use

(2.6).

3.1 The Wilson limit for the Ismail-Simeonov Expansion

nghskeyWilsons) ) this section we obtain a new infinite series over the Wilson polynomials W, [21, Section 9.1]

whose left hand side is given by a ratio of gamma functions. We will see that this identity
follows formally from the Ismail-Simeonov expansion over Askey-Wilson polynomials (3.1) by
taking the ¢ 1 1 limit.

Define a9 := a1 + a9, a13 := a1 + ag, ass := as + as, aeg := a1 + as + a3, ai234 =
a1+ az + as + ayq, a := (a1, a9, a3, aq). Note again that we use the compact product notation for
a,beC, I'(axb) :=T(a+b)'(a—0).
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Lemma 3.4. Let n € Ny, t,u,ap € C, k=1,2,3,4, R(aosa +t —u) > % Then

/‘X’ [(t+ix)l'(ag £iz)---T(ag Lix)
0 Iu =+ iz)I'(£2ix)

©T(t -5 +ix)l(a1 + 5 xix) - -T(ag + 5§ £ix)
=(u—t),
0

dz.  (3.4)[Temis
T(u+ 2 + iz)T(£2ix) z. (34)[Lemiileq]

Wy (2?; a)dx

Proof. The weight function for the Wilson polynomials is [21, (9.1.2)]

[(a; £iz)T(ag £ ix)l(ag i) (ag £ iz)

Wizsa) i= FCai) ~ (3.5) ilsomeeig]

Define W(z;a) := (2iz) '"W(x;a). The Rodrigues-type formula for Wilson polynomials is [21,

(9.1.11)]
W(z;a) Wi (2®;2) = W'W (z;a+ 3n) (3.6) [Rodriqueswil]
where W is the Wilson (divided difference) operator (see e.g., [18], [21, Section 1.16])
6f(x) 1 i i
W) = =55 ::%(f($+§) —flz—3)).

Substitute (3.6) in the left-hand side of (3.4) and integrate by parts using [18, Theorem 9.1],
along with the identity
D(t+iz) D(t—3+iz) L T(t +iz)

Wehuzia) - Tutlzi) )W gy = (@ O

It -5 +ix)
D(u+ % +ix)’

demonstrates (3.4). [ ]

A powerful integral representation of a very-well poised 7Fg(1) which we rely on to derive
the Wilson polynomial expansion formula below, is the ¢ 1 1 limit of the Nassrallah-Rahman
integral (6.3), which can be found in [10, (6.3.11)], [25, (1.17)].

Lemma 3.5 (Rahman (1986)). Let n € Ny, t,u,ar € C, k =1,2,3,4, R(as +t) > 0, R(aiozs +
t—u) > 3. Then

dzx

/OO [(t+ix)l(a; £iz)---T(ag +ix)
0 I(u +iz)I(£2iz)

_ 270 (u + a193)T(a12) - - - T(asa)T(t + a1)T(t + az)T(t + a3)

)t u2), (37
F(u i al)r(u T CLQ)F(U, i CL3)F(CL1234)F(t i CL123) ( u a) ( ) qtoonenassral

where

1

a123 +u — 1, 5(a123 + u + 1), a12, a13, ags, u — ag,u — . 1
1 )
g(a123 +u—1),u +ay,u+az,u + as,aizs, t + az3

J(t,u,a) == 7Fp <

ahman1986lemma)
Proof. See [10, (6.3.11)], [25, (1.17)]. The condition R(as+t) > 0 follows from the requirement
of uniform convergence of the 7F5(1) [7, (16.2.2)]. The condition R(a1234 +t — u) > 3 follows
since the integrand clearly vanishes at the origin by applying Stirling’s formula [7, (5.11.7)] on
the integrand as x — +o0. [ |
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(BaileyW) Remark 3.6. Observe that the generalized hypergeometric function 7Fg in (3.7) is very-well
poised and of argument unity. Using Bailey’s W notation for a very-well poised 7 Fg of argument

unity (see for instance, [13, p. 2])

a7%+17bacvd7€7f -1
S l4+a-bl+a—cl+a—dl+a—f"")"

W(a;b7cad7€7f) = 7F6<
In our case, the 7Fs(1) can be written as
W(ai23 +u — 1;a12, a13, ass, u — as, u — t).

Theorem 3.7. Let x € (0,00), t,u,a1,a2,a3,a4 € C, R(ajozq +t—u) > %, R(ar+t) > 0. Then

L(t +iz)I(t —ixz)  (a123)u(a1,az,a3);

D(u+iz)T(u—iz)  (a123)t(ar,az2,a3)y

oo

—t -1 K(t 2.
" Z (u—t,a1234 — 1)p(a123 + w)2n K(t, u,a) Wy, (z 73)’ (3.8) [WilsonTinit]
n

— n!(a1 +u,a2 +u,a3 + u,a123 + t)n(a1231 — 1)on

where

aizzt+u+2n—1, %ﬁnﬂ, aiz+n,ai3+mn, az3+n,u—ag, u—t+n 1
— )
%ﬁnl, a1 +u+n, as+u+n, az+u+n, ajaz+t+n, ajoza+2n

K(t, u, a) = 7F6<
= W(aj23+u+2n—1,a12+n,a13+n, agz+n,u—ag, u—t+n).

(Wilsonthm)
Proof. Consider the Wilson polynomial expansion

I'(t NG
I‘((u i ii)r u _ZZ Z c" t U, a ( ) (3.9) ‘Wilsonexpansion

Using orthogonality for the Wilson polynomials [21, (9.1.2)], one can obtain the coefficient of
the expansion (3.9), namely

1 C T(t+ix)l(t—1
coltn) = i | R g e e W (3:10)[costutisonere]
where the Wilson square norm is given by [21, (9.1.2)]
/ W (2?; 2) Wy, (22 2)W(z; a)dx

_ 2mn! T'(a12 + ) (a13 + n)(a1g + n)(ags + n)T'(a2e + n)(aszs + n) (3.11)
(a1234 — 1+ 2n)T'(a1234 — 1 +n) ' '

The integral in (3.10) can be re-expressed as an integral over a shifted weight function for the
Wilson polynomials using Lemma 3.4. Evaluating the resulting definite integral using Lemma 3.5
yields c(,u,a) in (3.8). Since the Wilson polynomials when normalized represent an orthonormal
basis for La(W(x;a), (0,00)), and due to Lemma 3.5, and due to its analyticity,

It +iz)(t —ix)
I(u+iz)I'(u —iz)

€ Ly(W(z;a), (0,00)),
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the definite integral so the series converges in the Ly sense. The conditions for convergence of
Lemma 3.5 are applied to this expansion theorem when the series does not terminate. The series
terminates when u —t € —Nj, and in this case all possible values for the parameters are allowed
as long as they are bounded and the functions involved are defined.

|

Remark 3.8. Note that Theorem 3.7 can also be derived formally by starting with the Ismail-
Simeonov expansion [19, (4.9)]

(uew o0
(1.t 19 Z (t,u,a; q)pn(2;alq),
where
e, 2 q) = t"(ut™!; q)n(q"aru, ¢"agu, ¢"azu, ¢" a1azast; q)oo Gluaig
n ) ) ) -

(¢, " tarazazay; q)n(art, ast, ast, qbi; q)o

1
3 -1 -1
bi,£qb7, q"a1a2,q"a1a3, ¢ azas, uay -, ¢ ut
897 1 1 q, aat

Gt,u7a;q .
n T
+b, q"azu, ¢"agu, q"aiu, ¢?"aazazas, g aiazast

. -1 -1,
- 8W7(b1a qnala27 qna1a37 qna2a37 ’LLCL4 ) ant y 4, a4t)7

with by = ¢*" lajasasu. Note that GEUH™1 = FE&4  of Theorem 3.1. We apply the substi-
tutions ay +— q%, for all k € {1,2,3,4}, € — ¢, t — ¢', u — ¢%, multiply both sides by
(1—q)>= and take the limit as q 1 1~. We use (2.7), (2.2), (2.8), and apply the relation [
(14.1.21)]

g Pr (@ +a7) /2100, 4, 4" ]q)
gt~ (1—q)n

[21, (9.1.1)]. Since

= Wy(z%a).

1 T(t + iz)D(t — ix)

(t+ix,t —ix)yy D(u+iz)l(u—iz)’

the result follows.

4 Continuous ¢-Jacobi polynomials

obipolynomials) \We would like to examine specialization and limit transition properties for the Ismail & Simeonov

result in terms of the continuous ¢g-Jacobi polynomials. For the continuous ¢g-Jacobi polynomials,
we adopt the standard normalization adopted by Rahman et al. in [21, (14.10.1)]. However, in
order to simplify our formulae we have further replaced qo‘+%, q7+% — «, . Using this notation
one has

Q
V|3

1 1 1 1
Pl (z)q) = pn(z; a2, —v2,—(qv)2, (q0)2|q)

l\)\b—‘
N)\»—‘

(¢, —(a7)2, —(qa7)?;q)n

 (q7asq)n <q gy, a7l

ase 10
1,4,49 |-
(45 On g2 e, —(a)7, —(gay)?

(4.1)[3:16]
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Note that some consequences of this notation are

u (B3 )
Cola: Blg) = =5 2D pB8) (4,
no @m0
and
i P gy = pio ),

where P\ is the Jacobi polynomial [7, (18.5.7)].

Corollary 4.1. Let |q|, |t|,|al],|8], 7] < 1, z =cosf € (—1,1).

” 0
(t/Bel 7tﬁe o ?q ZPO(’Y |q D/Btaz'%q
(tei? te—10; q

where

Ditana . (107 2)" (B, ~(7)?, —(907)%: @)u (g a2 Bt, —q™y2 Bt, —q" 272 Bt " 2 a2 9t g)o
n T

[

(q"av; q)n(a

m\»—A

. _1 1
H b = W (¢*" 2 a2y Bt —¢" (a) 2, —¢"

N

Proof. Let a1 = a%, as = —7%, a3 = —(qv)2,
follows.

t, =72t —(q7)2t, ¢*" 2 a2 Bt q) e

7, (q) "2 Bt, 4" B 4, (qa) 3 t).

no\»a

(qa)%, using (3.1), (4.1

(4.2)[3:17)

(4.3)[3:18)

Bit, 0739
HA:t ,

), the result

11 101
Note HEbe .= pAba®,=v2,~()2,(ge) %5 , cf. Theorem 3.1. Using (4.2) in (4.3), we obtain a

Jacobi generalization of the Gegenbauer generating function

1 2 (Bl + v+ VP (2)

y+n+1ln+ 8

(1+t2 —2tx)B

which is equivalent to [3, (3.1)]

1 B (Z _ 1)a+171/(z + 1),8+171/

(Z _ x)l/ 2a+pB+1—v

Xi(2n+a+ﬁ+1)F(a+ﬁ+n+l)(y)n

= 211
—~ (a+g+1>n <a+;+2)n (1 + £)2(n+5) 2n+o+y+2

T (PO @),

n=0

Na+n+1)I'(B+n+1)

(1 +t)2>’

(4.4)[3:19

where z = (t +t71)/2 (see Remark 5.1 below), and Ql(,aﬁ) is the Jacobi function of the second

kind. The g-analogue of the specialization of (4.4) with v =1 |

Z—x 2a+8

1 (z—l)o‘(z+1)f3§:(2n+a+ﬁ+1)F(o¢—|—ﬁ+n+1)n'
IFa+1+n)(B+1+n)

n=0

is (4.3) with 8 = q.

Qe () P (),
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5 Continuous ¢-ultraspherical /Rogers polynomials

calpolynomials) The continuous g-ultraspherical/Rogers polynomials are defined as [21, (14.10.17)]

n B B
Ch(z; Blg) == ((57(])) "9 561 (Bq_lql_n sq,qB e M)), x = cosf.

We now derive a generalization of the Rogers generating function (3.3) using the connection
relation for continuous q—ultraspherical/ Rogers polynomials [20, (13.3.1)]

- 2k\A K .
Ol q) = Z W Pt 510, (5.1) @)

(Szegotransrem) Remark 5.1. Note that the functions x — (2t) (1 + t2 — 2tx) and x — z — x are identical
through the Szegd transformation

t+t!
2 Y
which maps circles in the complex plane to ellipses with foci at +1, with the unit circle being

mapped to the line segment [—1,1]. Both of these functions appear in the analysis below. The
Rogers generating function (3.3) is a q-analogue of the generating function for the Gegenbauer

polynomials [7, (18.12.4)], [11]

Zz =

[e.e]

1
- - @ - i yall .
(1+ 12— 2tx)n D> t"Chia), (5.2)[4:23]

which has already been generalized in [/, Theorem 2.1]

BT (p)eim(n—r+d) & .
(z—l ) }rf)(f )2 1)1 2 (n *’”Qw_i 2)Cn (@), (5.3)[4:25]
T V)22 — 2 a—

where Q1 : C\ (—o0,1] — C is the associated Legendre function of the second kind defined in
terms of the Gauss hypergeometric function, v+ u+ 1 ¢ —No, [7, (14.8.7)]

VI (v 4 p1)(:2 - D) (L R
2u+11“(y+ %)Zu+u+1 2141 I/-f-% N

Q@ (2) =
(theo:4) Theorem 5.2. Let x = cosf € (—1,1), [t| <1, 8,7y € (=1,1)\ {0}, 0 < |q| < 1. Then

e :Z()E,yqiaﬁ 7 BT ) Gl (5.4 a:21]

Proof. The proof follows as above by starting with (3.3), inserting (5.1), shifting the n index
by 2k, reversing the order of summation. We use (2.4) through (2.11), since |a,| = [t|™,
Kgln —k +1]72, |Cn(w; Blq)| < [n+1]7¢/[1 — n + log, B|, therefore for n large enough

Cn(z; Blg)| < [n+1]7* < (n+1)7, (5.5)[4:24]
where K¢ = 1/(|1—7|log, ), log, 2 := log 2/ log ¢, and 03 and o4 are independent of n. Therefore
since

00 (/2] 00

D lanl D leknllCrlw; Bla)| < K7 Y [t (n +1)7 < oo,

n=0 k=0 n=0

by Lemma 2.4, the result is proven. |
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(summationthns) o yark 5.3. Coefficients of derived generalized generating functions such as (5.4) are amenable

to situations where summation theorems for basic hypergeometric functions (see for instance [7,
Sections 17.5-17.7]) may be utilized. When applicable, one may used these summation theorems
to compute alternative expansions. Some of these expansions may not be interesting, as they no
longer represent generating functions. Toke for example Theorem 5.2. If you use the q-Gauss

sum [7, (17.6.1)]

(¢/a,c/b;q)so

(c,c/(ab); q)oo’

on the coefficient of the expansion, and make the appropriate substitutions and simplifications,
it becomes

(tBe” tBe " q)oo _ (B1%, B°t1q ™" ) 2 (8, B2 @)n
(te?, te= )0 (B2, B2% q)oc (B*2q~1, B3t g~ )
which is an alternative expansion of the Rogers generating function. Howewver, it is not a gener-

ating function since t appears in the parameter of the polynomial as well as in the g-Pochhammer
coefficients.

201 (a’cb; q; C/(ab)> =

Cn(z; B¢ q) t"

By using Theorem 5.2 as a starting point, there are a number of interesting results which
follow.

5.1 Continuous ¢g-Hermite polynomials

(qHermite) O may derive an expansion of a specialized Rogers generating function in terms of the con-

tinuous g-Hermite polynomials defined as

] n’ 0 n_—2i
Hn(x|Q) = ezn92¢0<q_ 34,9 € 20) )
where x = cos 6. Using [21, (14.10.34)]

H,(7|q)
(¢ Dn

)

I.IIl C N —
31 0 ﬂ(ma ﬁ |Q)
one obtains

(tﬁewiﬁeiw;qxx . = <ﬁ§Q)n n Bq -
(te, te™?; q) oo _nzo @D 1( ’Bt> n(zla). (5.6)(a:2]

One can see that by setting 8 = 0 in (5.6), that this is a generalization of the generating function

for continuous ¢g-Hermite polynomials, namely [21, (14.26.11)]
1 "
. ‘ = —H, . 5.7)[4:27]
(tet? te=1f; q) o nz:% (4 @)n n(@la) (51)

5.2 Chebyshev polynomials of the first kind

(Tf1rst) Wo also derive an expansion of the Rogers generating function in terms of the Chebyshev poly-

nomials of the first kind T}, (cosf) = cos(nf). The following corollary is a g-analogue of [5,
(3.10)]

1 9 6i7r(% —v) o

Gar V= =PI

TL(v)(22 —1)274 15

(2)Tn(z), (5.8)[4:29]

el
m\mo\.—
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which is a generalization of Heine’s reciprocal square root identity [

L {f > Q1 () Tu(a).

n=0

Z—T

The g-analogue of (5.9) is (5.10) with g = 2. We have used the common convention Q, =

and €, := 2 — d,, is called the Neumann factor.

Corollary 5.4. Let x = cosf € (—1,1), [t| <1, B,y € (—=1,1)\ {0}, 0 < |¢q| < 1. Then

(t56i97t5€_iQQQ)oo . > (/&Q)n n 5,&]". 2
(tew7t€_i9§Q)oo B nzzoen <Q§Q)nt 2¢1< CJ"“ X )Tn(l')

Proof. Using [21, p. 474]

i (@ 9)n

Bl —
550 (qﬁ;q)n Cn(7;4°|q) = €, Tn(x),

the proof follows.

5.3 Continuous ¢-Legendre polynomials

, D- 286]

(5.9)[4:30]

0

v

(5.10) [#:28]

Furthermore, (5.4) produces the following result in terms of the continuous ¢-Legendre polyno-
mials which can be defined in terms of the continuous g-ultraspherical/Rogers polynomials by

[21, p. 478]

n 1
P, (x]q) :== q4 Cn(x;¢2]q).

Corollary 5.5. Let x =cosf € (—1,1), |t| <1, B,y € (—=1,1)\ {0}, 0 < |q| < 1. Then

. . _1

(tBe, tBe; q) o B = B . 1, Bq~z,B8q" 1
tei to—i0. = T (tg™3)" 201 ned 342
(te?,te " q)oo —o0 (@2;9)n q 2

Using [21, (14.10.49)]

lim P,(z|q) = Py(x),
qtl-

where P, is the Legendre polynomial defined by [21, (9.8.62)]

—n,n+1_1—x>

P,(x) := 2F1< 1 B

one can see that (5.11) is a g-analogue of [4, (14)]

1 eim(l1-v) (22 _ 1)(1—1/)/2 o0

Gz—=z) I'(v) > _(2n+ 1)@ (2)Pa(a),

n=0

which in itself is a generalization of Heine’s formula [11]

L _ 2(271 + 1)Qn(2) Py (2).
n=0

Z—XT

The g-analogue of Heine’s formula is (5.11) with 8 = q.

The above analysis is summarized as a hierarchical scheme in Figures 1 and 2.

q t2> Pu(zq).

(5.11) [genfeinestorn

(5.12) [entegtg

(5.13) [Heinestormulal



Figure 1. A hierarchy of generalized generating functions which connect expansions of classical and g-hypergeometric orthogonal polynomials for the
continuous ¢-Legendre, Legendre, continuous g-ultraspherical/Rogers, Gegenbauer, Chebyshev of the first kind, and continuous ¢-Hermite polynomials.

1 m\i.w:tv (n—v+3) vyt 1 ST ()i (H—3) &
= : (n+ Q. 2 (2)Cl(x) _ (e " 5 yon
G-’ i) - 1) ‘»:Mo -3 n T e :Muw? +1Q,1, 21 (2)Ch ()
(5.3) : Theorem 2.1 in Cohl (2013) [1] . (7.2) in Durand et al. (1976) [5]
L4
(tBe™ tBe ", e B Dn n By~L, Bg" 2 (tqe®  tge™: q) oo (¢ Y a R
"y L 3,7t | O3y = o )G ,
(1, te— 1, q :M\U . 2 L (! n(@370q) AT WSS? 21 e 7 n(@371q)
(5.4) : g-analogue (continuous g-ultraspherical/Rogers polynomials) / (5:4) with 3 = ¢ : g-analogue (continuous g-ultraspherical/Rogers polynomials)
mmnihmn\; B;q) ([ Bg"
AQ% e g MQ o :VA 887 ) Ha(alg)
v 9 v il o0

n=0

(5.6) : g-expansion (continuous g-Hermite polynomials)

N

=)

1 "
. _ = M Hy,(x|q
Qn%hm\%ﬂmvoo 0 (¢:0)n ( i )

: generating function for continuous g-Hermite polynomials

H. S. Cohl, R. S. Costas-Santos, T. V. Wakhare

Vv 1 @7 &
_ v
H G~ e 252+ VTR
1 2 (22 \w 1 _1 n=0
G_ay mﬁitl o) MQ@ wEﬁ@ (5.12) : (13) in Cohl (2013) [ _
: e n=0
i0 13,0 < (3. Ba—s
(5.8) : (3.10) in Cohl & Dominici (2011) [5] (tBe,tBe™; o _ M (B; O)n (t \J: p Bq2 mc 12\ p (@)
o 0. (e, te=1%; q) o0 rd Qw“mv: a4 201 Q:+m et n\rlq
(tBe’ tBe™" évoo n ., (B:BT" nEU
(te? te=10; q) oo :Mom: (@ Q)n “t" 201 g+l it ) Tn(e) (5.11) : g-analogue (continuous g-Legendre polynomials)

(5.10) : g-analogue (Chebyshev polynomial of the first kind)

4 L 4
1 1 ad 0
_ _ npew(,
——= ‘:M\Um;@z\\ 2)Tn(x) +e 2wy MN Cr(x) — MU (2n +1)Qn(2)Pu(z)
(5.9) : Heine (1881) [15] reciprocal square root identity (1881) (5.2) : Gegenbauer (1874) [11] generating function (5.13) : Heine (1878) [14] Heine’s formula
1 1 _ o0 1 1 1 ,i6 ,—if. i0 —if. o . 1 n41
(tg2e”, tg2e™; g)oc @5 D0 (02,42 (tBe”, the™; 4)os n (tge?,tge™"; q)os @D, 1n (€20 1
= t" o 7 | Th(x ‘\ t"Cy (23 Blg) ~ = tqg~1)" 20 ;q2t° | Po(x
e, 1= ) :Mucm: @D 201 eS| € (e, te=10; q)os mv (e, 17 ) :MHWSWMS:A q 1) 2 Pt (z|q)
(5.10) with 8 = W : g-analogue (Chebyshev polynomials of the first kind) (3.3) : Rogers (1893) [25] generating function (5.11) with 8 = ¢ : g-analogue (continuous ¢-Legendre polynomial)
<t
i

(figurel)
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Figure 2. A hierarchy of generalized Rogers generating functions which connects expansions of classical
and g-hypergeometric orthogonal polynomials for the continuous g-ultraspherical/Rogers, Gegenbauer,
continuous ¢-Jacobi, Jacobi, Wilson, and Askey-Wilson polynomials.

T(t +ix)D(t —iz) i (t(8 — 1))n(a123 + 1 + 1) a1y Wal2?; a)

T(tB +iz)T(tB — ix) = nl(n — 1+ aia34)n(ar +t, a2 +t, a3 + )4 (5-1)

o [ 2n 1+ ais 1, At gyt agg,n o ags, 8 — ag,n (B — 1) 1
e Lttt 4oy +tB,n+ax +t8,n+az +6,2n + atsan +apy +t

(3.8) : Wilson limit of Ismail-Simeonov generalized generating function

(tBe”, tpe="; 11)30

e Y ol

n=0

t"(B; @)nlg"aru, ¢"azu, ¢"azu, tq" a1asas; @)oo
(q, g taragazay; q)n(tar, tag, tas, ¢*"ayazasft; ¢)so

(B, t,a,q) ==

o6 qz“’lalazasﬁt,iq"+%(alaza3/3t)%7q"alazﬁq"ala;sﬁq"azaaﬁt/ayq”/fﬂ ”
87 1q, tay
+£q"F (ara2a3B)% , g a1 Bt, ¢ asft, ¢ a3 B, ¢ arasazas, tgrarasas

(3.1) : expansion of Rogers generating function in Askey-Wilson polynomials

1 (z — 1)0+1=v(z 4 1)fHv 2 @2n+a+B+DM(a+B+n+1)(V)n - (a+1-1,6+1-1) 5
= i ‘ o Pl
- 2o AP+ ; Matnt DTG +a+D) ol (@) @)

Theorem 1 in Cohl (2013) [3]

(tBe? tBe="; q)

PR LR oo (cr,y)
= Zdn (8,1, .7, ) P (x]q)

n=0

(ta~2)" (8, —(07)%, —(q07)¥; 9)n (q”m3t —q"yE L, g™ B3 L " T a%yt )
(@ oy; @hnla®t, —v3t, —(q7)t, ¢*"* 2a37BE; )oo

dn(B,t,0,7,q) ==

5 @ Bazpt, iq’”%a%(v’ﬁtﬁ —q"( cw)% —q"E(a0)3, ¢ E, (qa) 3B, g7 (ao)he
X :q, 3
e £q" 0k (Y81)E, et Bt —qnyE Bt —q" 5755t oy, ¢ traby 0

(4.3) : g-analogue (continuous g-Jacobi polynomials)

1 (z -1z +1)? (2n+a+5+1)1“a+5+n+1) (@,9) (0,8
_ plasB)(y
HX[:J Ta+linl(Britn O GR7@

z—x 20+9
(9.2.1) in Szegd (1959) [29]

(tBe”,tBe™; g)oe () (
(e, 17 ) Zd (g, 0,7, @) P (xlq)

n=0

(4.3) with 3 = ¢ : g-analogue (continuous g-Jacobi polynomials)

1 on+3T P eim(—v+3) "
e YT e SURYRL S (DT
™ v)(z 4 =0

(5.3) : Theorem 2.1 in Cohl (2013) [1]

(8 tBe™ q) s <= (B;@)n ( By~ B 2)
= t" o . 1q, vt ) Cr(x;
(tei?, te=%; q)oo ;)(7; O 2O gt 0T (@719

(5.4) : g-analogue (continuous g-ultraspherical/Rogers polynomials)

(figure2)
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5.4 A quadratic transformation for basic hypergeometric functions

(quadsec) 1, (3.1), let ag — 7%, as — —7%, asz — —(qv)%, aq — (qv)%, and specializing the Askey-Wilson
polynomials to continuous g-ultraspherical /Rogers polynomials using [21, p. 472]
(V%5 @)n

P (@)?a).
) ) ) n

NI

1 1
pn(z372, =72, —(qv)

Cn(z;7|q) =

produces an expansion of the Rogers generating function whose coefficients are an g¢7. By
comparing the coefficients of this expansion with the generalized Rogers generating function

(5.4), and further replacing (3,7) — (¢~ "5,¢ "), t — (q/’y)%t, we derive

1 1 _
Blv,B. o\ (@(B)?, avt, qt;q) oo Bt, £q(Byt)z, £q2y, =y, By, B
Q(bl y 4, t - D) 8P7 1 1 ) ) 7qt
q (gB7t, 4Bt qt?; q)so +(Byt)=, £q2 Bt, —qfbt, 72, gyt

)%, g7, qt; q) o !
= (a(Bt)”, gt gt ) sWa(Bt; £q2 7, —v, By, B q, qt). (5.14)[getCor44IsmailSim

(aB7t, abt, qt?; q)so

This is a generalization of [19, Corollary 4.4] with 5 = . By re-expressing (5.14), we see that
our procedure has produced a new quadratic transformation for basic hypergeometric functions

(see [26]).
Theorem 5.6. Let 0 < |q| < 1, |gt| < 1, |qt?| < 1. Then

a,b 9 (q(at)g,qab_lt,qt;q)m a2b='t, +qab=2t2, £qzab~!, —ab~ 1, bt,a
201 qab = 807 1q,qt

a 1799 (qa2b*1t’ qat,qtz;q)oo :tab_%t%,ﬂ:q%at, —qat, qa?b=2, qab=1t

_ (q(at)?,qab~"t, qt; q)
-

27—1,. 91 -1 .
0201t qat. g% g sW~ (a b~ t;£q2ab” ", —ab ,bt,a,q7qt),

oo

which is valid under the transformation t — —t.
(Theorem9quad)

Proof. Start with (5.14) and replace (3,ab~') + (a,b). Given (3.2), the expression for the
very-well poised hypergeometric series gWr, this completes the proof. |

This quadratic transformation has some interesting consequences. For a = 0 one obtains the
g-binomial theorem (2.10). For t € C, t = z'qbfé, the 2¢1 can be summed by the ¢g-Kummer
(Bailey-Daum) summation [10, (IL.9)] (this leads to a very unusual summation of the g¢7). It
corresponds in the ¢ T 17 limit to the quadratic transformation for the Gauss hypergeometric
function [7, (15.8.21), (15.8.1)]

a,b 1 a,a—b+ 3 F4t
F ’ 2 ) = ——— o[ 2o ——— . 5.15
241 (a ) ) (1 + t)2a 241 <2a —9%+1’ (1 + t)2> ( )‘quadGausshypergeon

Note that [26, (4.1)] is a quadratic transformation of basic hypergeometric series which in the
limit ¢ 7 17 yields (5.15), but our new quadratic transformation is altogether different.

(WarnaarRains) Remark 5.7. Our quadratic transformation given in Theorem 5.0 has recently been extended by

Rains & Warnaar using Kaneko-Macdonald-type basic hypergeometric series (see [27, Theorem

5.29)).

5.5 Jacobi expansion of (1 —z)™” and associated expansions

{Jacobiassoc) From the Jacobi expansion of (z —z)™" (4.4), we can derive an expansion of (1 —z)~¥ by using

the limit as 2 — 1. Also, this is the corresponding limit of the Wilson polynomial expansion
(3.8) to the Jacobi polynomials. In this subsection we derive this and other limiting expansions,
which generalize [7, (18.18.15)] for v = —n, n € No.
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Corollary 5.8. Let z € (—1,1), v € C, «, 8 € C such that R(aw — v + 1) > 0. Then

o

1 F(a—u+1)z(a+6+2n+1)r(a+6+1+n)(u)n

- MNa+1+n)I'(a+p+2—-v+n)

T PO (x). (5.16) [Jacobi tmmux|
— X

n=0
Proof. Consider the expansion over Jacobi polynomials

o0

=Y cen(v,a, B)PLP)(a).

n=0

R
1—a)"

Using orthogonality for Jacobi polynomials, one can see that the coefficient of the expansion is
given as

1 ' a—v 8 plas
en(v,an fB) = (o) /1(1 — )7V (1 4 2)° PP (z)dx,
where h,(c, ) can be found in [21, (9.8.2)]. This integral can be computed with the assistance
of [7, (18.17.36)] with z = a—wv+1, which implies that for the integral to converge one must have
R(aw—v+1) > 0. Since the function z — (1 —2z)~" is analytic (clear from the binomial theorem)
on the segment (—1,1) which is interior to an ellipse with foci at 1, then the integrated form
implies the expansion by [7, Section 18.18(i)]. |

It is interesting to see that this expansion can also be obtained from more general expansions
using a limiting procedure. In order to perform these limits termwise, one must justify the
interchange of the limit and the sum. Having already proved the expansion formula, we leave
these justification proofs to the reader.

Remark 5.9 (Formal limit 1). Start with (4.4) and examine the singular behavior of the Jacobi

function of the second kind an"g) (2) as z — 17. Starting with the definition of the Jacobi
function of the second kind in terms of the Gauss hypergeometric function, and applying [7,
(15.8.2)], results in the identity

an’ﬁ)(z) = —g csc(ﬂa)Pﬂga’B)(z)

207D ()T (B + v + 1) <7+1,—Oz—ﬁ—’7. 1—2
62 1 a8

5.17)si
Na+B+y+1)(z—1)*=2+1) 11—« D) )’ (5.17) [singlQJac|
where P§a’ﬁ)(z) is the Jacobi function of the first kind, o, 8,7y € C, such that a+~v+ 1, a+1 ¢

—No, is defined by

PR (2) = Platy+l) p(-matBfty+ll-z)
! [+ 1)I(y +1) a+1 2

Note that Py(a’ﬂ)(z) generalizes the Jacobi polynomials for v = n € No. Using (5.17), easily
demonstrates that as z — 17,

N 2T a+1-v)I(B+1—-v)

_ atlv (a+1—v,+1-v)
(s = 1)7HQ 0~ I A

n+v—1

9

for Rla+1—v) >0, and (5.16) follows.
ammainaglinits) [ emma 5.10. Let a,b € C. Then we have as 0 < T — o0,

I'(a+iT)
I(b+ir)

— ot5(ab) a-b {1+0( N}, (5.18) [gammainaglimits

where 7% takes its principal value.
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Proof. Let § € (0,7). From [7, (5.11.13)], as z — oo with a and b real or complex constants,
provided argz < m — §(< m). If one takes z = +ir with 7 > 0 then the argument restriction
implies arg(+i7) = £7/2, and the result follows. |

Remark 5.11 (Formal limit 2). Jacobi polynomials are obtained from Wilson polynomials using

[21, (9.1.18)]

PA)(z) = lim (5.19) [JacobiWilsonlimit

1-2)r> a+1 a+1 B+1 . B+1 .
W, : .
( 5 g g g T T

00 721

Define v=u—t. Apply (5.19) to (3.8) using (5.18) repeatedly, one obtains

S s o N SN UYL 52 T

(1—:6)" = v (a+1 a+1) (aJer _i_u’aTH_’_u)n(a_i_ﬁ_’_lhn n

2 7 2 Jt+v n=0

x lim 7
T—>00

2w42n ) a+1+n,v+n o 2)
Hittv+n2H +t+v+na+B+2+2n

The above limit of the o F3 can be computed using the asymptotic expansion for large variables of
the generalized hypergeometric function [7, (16.11.8)] assuming R(a+1—v) > 0. This completes
the proof.

From the expansion formula for (1 — )™ in Jacobi polynomials (5.16), one can derive some
interesting specialization and limit consequences. We omit the justification for interchange of
sums and limits to the interested reader.

Corollary 5.12. Let x € (—1,1), p € (—3,00) \ {0}, v € C, such that R(u—v+3) > 0. Then

2u—v — v 1 > n)\v
1 22T (p +2)F(M)Z((u+ W oy, (5.20) | Gogimmux]

11—z  /rTQ2u+1-v) = u+1—-v), "

Proof. Specializing (5.16) using the definition of the Gegenbauer polynomials in terms of the
Jacobi polynomials (1.1), which completes the proof. [ |

Corollary 5.13. Let z € (—1,1), p € (—3,00) \ {0}, v € C, such that R(p—v+3) > 0. Then

1 T(% —v)

— = en(V)n T
v v N<x)7 (5.21)[sumimncChe
(I-z)” V2 F(lv);)(l—u)n

where €, 1= 2 — 0,0 is the Neumann factor.

Proof. Specializing (5.20) using the limit relation for the Chebyshev polynomials of the first
kind 7T}, (z) with the Gegenbauer polynomials, namely [!, (6.4.13)]

.on—+
lim = ECh(@) = enTa(a),
which completes the proof. |

The following result generalizes [7, (18.18.19)] for v = —n, n € Np.

Corollary 5.14. Let z € (0,00), a > —1, v € C such that R(a +1 —v) > 0. Then

1 o0
= = a+1—uzra+1+nLg(a¢). (5.22)[ sunimncLag]
n=0
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Proof. Specializing (5.16) using the limit relation for Laguerre polynomials L% (z) with the
Gegenbauer polynomials, namely [21, (9.8.16)]

2z
lim PP <1 - > = L%(x),
Jim P 5 )=
which completes the proof. |

6 Definite integrals

sandqintegrals) Congider a sequence of orthogonal polynomials (pg(z; ) (over a domain A, with positive weight
w(x; av)) associated with a linear functional u, where « is a set of fixed parameters. Define sy,
k € Ny by

52 = /Apk(ﬂv;a)pk(x;a)w(a:;a) dz.

In order to justify interchange between a generalized generating function via connection relation
and an orthogonality relation for py, we show that the double sum/integral converges in the
L?-sense with respect to the weight w(z; ). This requires

o0
> disi < oo, (6.1) [forn-inve-L2]
k=0

[e.e]

where dj, = Z AnCh -
n=k
Here a,, is the coefficient multiplying the orthogonal polynomial in the original generating

function, and ¢, is the connection coefficient for p;, (with appropriate set of parameters).

(lemmasum) [.emma 6.1. Let u be a classical linear functional and let (p,(z)), n € Ny be the sequence of
orthogonal polynomials associated with u. If |p,(x)| < K(n+1)°~", with K, o and ~y constants
independent of n, then |s,| < K(n+ 1)79"|so]|.

Proof. Let n € Ny, then
sn=(u,pp) < (K(n+1)°7")* (u,1) = (K(n 4+ 1)°7") 5.

n

The result follows. [ |

Given |py(z; )| < K(k+1)7~*, with K, o and + constants independent of k, an orthogonality
relation for pg, and |t| < 1/7, one has

[e.9] n
Z |an| Z |k nSk| < 00,
k=0

n=0

which implies

00
Z |dk8k‘ < 00Q.
k=0

Therefore one has confirmed (6.1), indicating that we are justified in reversing the order of our
generalized sums and the orthogonality relations under the above assumptions.

All polynomial families used throughout this paper fulfill such assumptions. See for instance
(5.5). Such inequalities depend entirely on the representation of the linear functional. In this
section we derive integral representations from the infinite series expansions presented in the
previous sections. In all cases, Lemma 6.1 can be applied and we are justified in interchanging
the linear form and the infinite sum.
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6.1 Definite integrals for Askey-Wilson and Wilson polynomials

ilsonintegrals) Ty orthogonality relation for the Askey-Wilson polynomials is given by [21, (14.1.2)]
' w(z; a;q)
pm (@ a|q)pn(; aIQ)ﬁdfv = 27hn (a5 q) 6 n, (6.2)
-1 -z
where a := {a1,a2,as3,a4}, w: (=1,1) — [0, 00) is defined by
2. 2
w(z;a;q) = . (e ’q.)oo . , T =cos0,
(1€, aze™®, aze®, asei®; q)o
and
ho(2: q) = (a1a2a3a4q" ;5 q)n(a102a304¢%"; @)oo
n b L

(¢"*1, arazq™, a1a3q™, a1a4q™, aza3q™, a2a49", a304G™; ¢) oo

Corollary 6.2. Letn € Ng, x = cosf € (—1,1), 5 € (—1,1), max{|ai1], |az]|, |as|, |aa|, [t]} < 1,
cn(B,t,a;q) defined as in (3.1). Then

b (tBe”, tBe; q)o w(w; a;q)
-a|qg) DB ) g — onh(a; q)en (B, 1, a5 q).
e (s ala) S D i = (s ) (5ot
(cor62)
Proof. Multiply (3.1) by w(x;a;q)pn(z;alg)/v1 — 22 and integrate over (—1,1) using (6.2)
produces the desired result. |

(Nassrah) R emark 6.3. In [19], the Nassrallah-Rahman integral [10, (6.3.2)] is used extensively in relation
to the Askey-Wilson expansion given in Theorem 3.1. This integral is given as follows. Note
that we tempomrily adopt a new notation al2 ‘= aiag, a13 ‘= ai1az, al4 ‘= a1a4, a123 ‘= a1020a3,
a1234 = Qa10a2a3a4, etc., and that we deﬁne {an, e ,a34} = {CLH,a12,a13,a23,a24,a34}. Let
max(lql, [, laul, lasl, lag], [aa) < 1. Then

1 +i6
J(t,u,a|q) = / (uei.07q)oo w(x,a, )dl‘ = ﬂ(ual,uag,uag,a1234, a1237q>oo ( U & q), (6.3) nassrarahman
—1 (t@ v 7q)oo \/1—£U2 (Q7ua1237a127"'7a347ta/17ta27ta3;q)oo

where

-1 1

ua123q” ", £(ua123q) 2, a2, a13, ass, u/as, u/t

_1nd 1 g, a4
+(uai23g1)2, uar, uas, uas, aiaz4, taiss

I(tv u, a; Q) = 8¢7 (

= sWr(uaias3q™t; ara, a13, ass, u/as, u/t; q, tay).

The sW+(q,tay) which appears in the Nassrallah-Rahman integral is very-well poised and ezxactly
matches the requisite parameters for the Wy used in Theorem 3.1. The connection between
the Nassrallah-Rahman integral and the coefficients of the Ismail-Simeonov expansion which
are giwen in Corollary 6.2, can be seen through the following definite integral identity for the
Askey-Wilson polynomials

/1 (uet™?; )oo pn(a; alq) w(a; a; 9, (ug2e*?;q) o wlx;aq?;q)

: x=t"(u/t; / TR
1 (te:lzz@; )oo V1—22 (w/t;@)n -1 (tq_feiz‘gSQ)oo 1—z?

1

dx,

where aq% = {alq%,agq%,agq%,mq%}. This identity can be derived by using the Rodrigues-type
formula for the Askey-Wilson polynomials [21, (14.1.12)] and integration by parts formula for
Askey-Wilson polynomials given in [2], [17, Section 16.1].
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Now we give a definite integral for the Wilson polynomials which is equivalent to (3.8). This
equivalence follows through Lemmas 3.4, 3.7. We will need the weight function for the Wilson
polynomials (3.5) and the Wilson square norm (3.11).

Theorem 6.4. Let n € Ny, t,u € C, R(a1,a2,a3,a4) > 0, and non-real parameters occur in
conjugate pairs. Then

/oo I'(t+ Z:I)F(t - ZI) W (2 a)W(z: a)da — H,(a)(a123)u(a1, a2, a3)i(a123 + w)an(aizse — 1)n
o TD(u+iz)T(u—ix) (a123)i(a1, az, az)u(a12s + t)n(aizsa — 1)2nn!

(a1+u,astu,as+u

(u—1t), araztu+2n—1, BIUEINtL g0 n a5+, asz+n, u—as, u—t+n
7Fs _ 1.
)n Qs 2n=l g futn, ag+utn, az+utn, agz+t+n, aizsa+2n

Proof. Multiply both sides of the Wilson polynomial expansion (3.8) by W,,(z?%;a)W(z;a),

integrate over (0,00) using orthogonality of the Wilson polynomials. Replace in the resulting
expression m — n, and the result follows. |

6.2 Definite integrals for continuous ¢-Jacobi and Jacobi polynomials

The orthogonality relation for continuous g-Jacobi polynomials [21, (14.10.2)], after scaling so
that qo“% — o« and qﬂ+% — 7y is

1 . .
PO (a]g) P (2q) CELLD g oo (04 ),
[ Pl P ) 2L b = 2mg, (0, 730)

where
. 2
(6219; )OO
w(T; o, q) == |—1— T :
(a2el?, —y2e?;q2)
and
n 11 1 1 1
an(enyq) = —— L= 0)(g2 0,427, ~(09)2; Onl(@79)2, 4(27)2; 9)o
n 7Y q) = 1 1 1 1 1 :
(1= ¢*>ay)(q, v, —(a)2;0)n(q, g2, g2, —(7)2, —(79) 2; @)oo

Corollary 6.5. Let n € Ny, z = cosf € (—1,1), a,7y € (—%,oo), dn(B,t,a,7v;q) defined as in
(4.3). Then

! (tﬁew tﬁ@_w’Q) w(z; o, ;q)
_? 2 2)0 pley) (plg)—2r D) g or (o, v q)dn (B, t, a,v; q).
/_ (e e g T (zlq) N gn(, 7 @)dn (B, L, 0,73 q)

Proof. Multiply (4.3) by w(zx;a,~; q)PflOW) (x|q)/V1 — 22 and integrate over (—1,1) produces
the result. ]

Corollary 6.6. Let n € Ny, a, 8 > —1, v € C, such that R(a +1—v) > 0. Then

(1—az) (2)(1 — 2)*(1 + 2)Pde =

/1 (@.5) 20081 (o + 1 — 1) (W) T(B + 1 + 1)
1 " nT(a+B+2—v+n) '

Proof. Follows from orthogonality of the Jacobi polynomials [21, (9.8.2)] and (5.16). |
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6.3 Definite integrals for continuous ¢-ultraspherical/Rogers and Gegenbauer
polynomials

The property of orthogonality for continuous g-ultraspherical/Rogers polynomials found in
Koekoek et al. (2010) [21, (3.10.16)] is given by

1 . . 2.
/_  Om(a: Bl)Cn( 6|q)w\/(f’_ili) dz = 21 ((11 - gq)flf (gf qqt;f(q?; S (6.4)
where w : (—1,1) — [0, 00) is the weight function defined by
(€ ) | |
w(z; Blq) = (Be2i?; q) (6.5) [weignt]

We use this orthogonality relation for proofs of the following definite integrals.

Corollary 6.7. Let n € Ng, z = cosf € (—=1,1), 8,7 € (—=1,1)\ {0}, 0 < |¢| < 1, |t| < 1. Then

L (tBe? tBe™; q) w(z;7|q)
W€ 3 Doo iy (4 ] q) D)
/1 (tei?, te=; q)oo (:714) Nk

¥,74; @) (B,7% ¢ Byt Bg"
((72 q'qiwgq q’y'q))n 2¢1< g+l ;g7 ) . (6.6)[6:41]
b b o0 b b n

Proof. We begin with the generalized generating function (5.4), multiply both sides by

=27

w(z;vlg)
Crn (x5 —,
where w(z;7|q) is obtained from (6.5), integrating over (—1,1) using the orthogonality relation
(6.4) produces the desired result. [

Corollary 6.8. Let n € No, A, 1 € (—3,00) \ {0}, [t| < 1. Then

1 [ 1 -

/ Cn(m) o~ (1_x2)u—%dx: ﬁr(u+ 2)()\72#’)” 2F <)\ N7A+n7t2> tn
1 (1 =2tz +¢2) L(p+1)(p+ 1)nn! p+n+1

Proof. Starting from (6.6) and taking the limit ¢ 1 17, using [21, (14.10.35)]

lim Cy(2;¢*q) = Cl(),
qtl—

the result follows. [ ]

Observe that since the Gegenbauer polynomials can be written as [7, (18.5.10)]
A _ n (A)n _%7 _nTH . 1
Cn(z) = (22) n!2F1<1—>\—n’x2 !
the above integral can be written in terms of a oFj, and we also have a similar oF} on the
right-hand side.
Corollary 6.9. Let n € Ny, a, 8 > —1, v € C, such that R(a +1—v) > 0. Then

! _ _1 2081V (o 4 1 — 1) (1), T(B+ 1 +n)
v 2 2 =
/1(1—33) Cn(@)(1 —a7)" 2 de nlNa+pB+2—v+n) ‘

Proof. Follows from orthogonality of the Gegenbauer polynomials [21, (9.8.20)] and (5.20). W

Similar definite integrals can be obtained for the Chebyshev polynomials and the first kind
multiplied by (1 —x)™" and for the Laguerre polynomials multiplied by 1/x¥, using (5.21) and
(5.22) respectively.
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7 Outlook

It has been suggested by a referee that it would be interesting to investigate the transformation
properties of the derived definite integrals in this paper since the Rogers generating function
is a generalization of the generalized Stieltjes kernel (z — z)™". The transformation and trans-
mutation properties of the generalized Stieltjes transformations for the Gauss hypergeometric
function has been summarized recently in a paper by Koornwinder [22]. Generalized Stielt-
jes transforms have evident properties of mapping solutions of the hypergeometric differential
equation to other solutions of the same equation, while generalized Stieltjes transforms map
solutions of the hypergeometric differential equation to solutions of another differential equa-
tion. Unfortunately a similar analysis for our problem is not easily accomplished because the
singularities of the Gauss hypergeometric differential equation are 0, 1 and co, whereas for in-
stance, for Jacobi-type orthogonal polynomials, the singularities are at +1 and oo. In future
research, we would like to apply an analogous result to study the transformation properties for
definite integrals of Jacobi-type orthogonal polynomials and also for their g-analogs such as for
continuous g¢-ultraspherical/Rogers polynomials using the Gegenbauer and Rogers generating
functions. This study could have deep consequences.
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Response to Referee Report of 09/13/2018 on
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by Howard S. Cohl, Roberto S. Costas-Santos and Tanay V. Wakhare
in
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Dear Editors of JMAA:

We greatly appreciate the referee report we received on 09/13/2018. We have implemented

all the suggestions of the referee. Including those, we have made the following modifications to
the submitted manuscript in order to increase the manuscript’s readability. Unless otherwise
specified, all reference numbers below refer to the current version of the manuscript.

(1)
(2)

3)

(4)

Correlated Response to Referee Report

We have completely reworded the abstract and have removed the comma.

As suggested, we have changed the definition of the ¢g-Pochhammer symbol (g-shifted facto-
rial). Also we have removed Lemma 1 (previous version).

In regard to Lemma 3 (previous version), we have modified this lemma (and also its proof)
so that it involves absolute values. With this change, we are now able to keep ¢ € C, such
that |¢| < 1, instead of ¢ € (0,1).

In regard to the referees comment, we have completely reworked Section 3.1. We have
modified our proof for the Wilson polynomial expansion so that we compute the expansion
coefficients as an integral over Wilson polynomials which is the ¢ 1 1 limit of the Nassrallah-
Rahman integral, namely [10, (6.3.11)]. This gives the integral of the precise requisite ratio
of gamma functions which is necessary. The justification for associating the integrated form
with the series coefficients follow by the analyticity of the ratio of gamma functions. We
give a precise x — 0o asymptotics to produce ranges of parameters for convergence.

[HSC: Roberto, can you check this proof of Theorem 5.2 carefully, with the
estimates! Then we can tell the referee what o3, 04 are.]

For Lemma 5.10 (Lemma 11, p.14, previous version), we have changed a typographical error
which most likely led to the referee’s confusion. We have also added the comment that 7¢~°
takes its principal value.

We have modified our proof for the Jacobi expansion of (1 — )~ so that we first derive the
integral and then justify that this implies the expansion coefficients by analyticity of the
integrand. We have moved the limit justifications to remarks.

[HSC: Roberto, can you check this proof of Lemma 6.1 carefully, with the esti-
mates! Then we can respond to the referee’s comment about whether we can
replace it with more concrete assumptions, for example, whether A is a bounded
set.]

General Changes

e Changed the numbering for sections, subsections, equation, lemmas, theorems, corollaries,
remarks, etc.
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e Fixed some typographical errors including spelling mistakes and vestigial errors.

e Since the g¢7 from Ismail & Simeonov [19] is very-well poised, we have made every effort,
where it appears, to write it as an gWy. In particular in Section 3, Subsection 3.1, Section
4, and Subsection 5.4.

e Roberto, should we create a new lemma in Section 6 specifically stating that under spec-
ified conditions, we can reverse the order of the generalized sums and the orthogonality
relations? Then we can refer to that lemma in the proofs of the definite integrals.

e Roberto, we need to talk about how we will deal with the referee’s requests. I think many
of them you are going to need to think about, although I can help if you give me some
pointers.

Specific Changes

e Rewrote the abstract so that it reflects the current state of the manuscript.
e Defined some new variables in Section 3, namely Fo'%%9, G4%%% and in Section 4, namely

Hhayy; Hayyiq s :
D&tevia YELOTe i order to more compactly write some long formulae.

e Inserted Remark 3.6 in which it is shown that the coefficient of our Wilson expansion
in Theorem 3.7 can be written using Bailey’s W notation for a very-well poised 7Fg of
argument unity.

e We have re-structured Section 4, with the continuous ¢g-Jacobi result presented as a Corol-
lary.

e Inserted 3 subsections in Section 5 to organize the material better (5.1 Continuous q-
Hermite polynomials, 5.2 Chebyshev polynomials of the first kind, 5.5 Continuous q-Legendre
polynomials).

e A new Remark 5.3 was inserted which discusses how may utilize summation theorems for
generalized and basic hypergeometric functions to produce new expansion formulae.

e Changed title of Section 5.5 to Jacobi expansion of (1 — x)™" and associated expansions.

e We have added a Remark 5.7 referring to Rains & Warnaar (2018) [27], in which our
quadratic transformation which relates an g¢7 to a 2¢1, is extended using Kaneko—Macdonald-
type basic hypergeometric series.

e A typo has been fixed in Lemma 5.18, and it is mentioned that 7¢~° takes its principal
value.

e We have reworked Section 6.1 and have added a new Remark 6.3 which discusses the

Nassrallah-Rahman integral [10, (6.3.2)], and its connection with the Ismail-Simeonov
expansion, providing an elegant proof of the Ismail-Simeonov result.
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