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1. Introduction 7

Let us consider a measure µ supported on the subset of the complex plane γ. In the 8

vector space P of all polynomials with complex coefficients, we define the inner product 9

⟨ f , g⟩ξ := M f (ξ)g(ξ) +
∫

γ
f ′(z)g′(z)dµ(z), M, ξ ∈ C, (1)

assuming that the integral exists. The inner product (1) is called a discrete-continuous 10

Sobolev-type, which is a particular case of the Sobolev-type inner products. Algebraic and 11

analytical properties and the asymptotic behavior of the families of orthogonal polynomials 12

with respect to Sobolev-type inner products have been extensively used for the last 25 years. 13

For an overview of this subject, see [17], or the introduction of [14] as well as the [16]. 14

The discrete-continuous Sobolev inner products were introduced in [9] to study the 15

behavior of the best polynomial approximation of absolutely continuous functions in the 16

norm generated by a Sobolev inner product as (1). Later, in [11], R. Koekoek considered 17

the Laguerre case with dµ = xαe−xdx, α > −1, γ = [0,+∞) and ξ = 0. The Gegenbauer 18

case was studied by Bavinck and Meijer in [3,4] with dµ = (1 − x2)λ−1/2dx, λ > −1/2, 19

γ = [−1, 1] and ξ1 = −1 and ξ2 = 1. 20

The families of polynomials orthogonal with respect to this type of inner products have 21

been studied as the extension of the Bochner-Krall theory (i.e., families of polynomials that 22

are simultaneously eigenfunctions of a differential operator and orthogonal with respect to 23

an inner product, see for the discrete-continuous [1,10,13] 24

The starting point of our work is the orthogonality with respect to the Jacobi case. 25

Let (Qn) be the family of monic orthogonal polynomials with respect to the Sobolev inner 26

product 27

⟨ f , g⟩ := f (ξ)g(ξ) +
∫

γ
f ′(z)g′(z)(1 − z)α(1 + z)βdz, (2)

where α, β ∈ C, γ is a path encircling the points +1 and −1 first in a positive sense and 28

then in a negative sense, as shown in [12, Figure 2.1], M = 1, and ξ ∈ C. 29

Let us consider
(

P(α,β)
n (z)

)
be the monic Jacobi polynomials, i.e., the family of monic 30

orthogonal polynomials with respect to the measure µ. Therefore, for each n, P(α,β)
n (z) 31

satisfies 32∫
γ

P(α,β)
n (z)zk(1 − z)α(1 + z)βdz = 0, k = 0, 1, ..., n − 1, (3)
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and let Πn+1,ξ be the polynomial primitive of (n + 1)P(α,β)
n vanishing at ξ, i.e. for all n ≥ 1 33

we have 34

Πn+1,ξ(ξ) = 0,
d
dz

Πn+1,ξ(z) = (n + 1)P(α,β)
n (z). (4)

Then, by definition of Qn, it is clear that Πn+1,ξ(z) = Qn+1(z) for all n = 0, 1, 2, .... It is 35

straightforward to prove that the n-th orthogonal polynomial with respect to the Sobolev 36

inner product (2) can be written as 37

Qn(z) = (z − ξ)Pn−1(z),

where Pn is called the polar polynomial associated with µ (see [18]) and ξ from now 38

on will be called the pole. Let us define the differential operator Lξ : H1(γ) → L2(γ) as 39

Lξ [ f (z)] = f (z) + (z − ξ)
d
dz

f (z), (5)

where H1(γ) := { f ∈ L2(γ) : f ′(z) ∈ L2(γ)} is the Sobolev space of index 1. Take into 40

account Qn is orthogonal with respect to the inner product (2), we have 41∫
γ

Lξ [Pn(z)]zk(1 − z)α(1 + z)βdz =
∫

γ

(
Pn(z) + (z − ξ)P′

n(z)
)
zk(1 − z)α(1 + z)βdz = 0,

for k = 0, 1, ..., n − 1. Therefore, Pn is the nth monic orthogonal polynomial with respect to 42

the differential operator Lξ , and the measure 43

dµ = ω(z; α, β)dz := (1 − z)α(1 + z)βdz,

see [2,5–7,18,19]. In such a case, we have 44

Pn(z) + (z − ξ)P′
n(z) = (n + 1)P(α,β)

n (z). (6)

The main goal of this article is to study algebraic (zero localization), differential, and 45

asymptotic properties of the orthogonal polynomials with respect to the inner product (2) 46

for the Jacobi case, which is a natural extension of the Legendre case [18]. 47

In Section 2 we obtain several algebraic relations between the polar Jacobi polynomials 48

and the Jacobi polynomials and some differential and different identities related to the polar 49

Jacobi polynomials. In Section 3 we study the location of the zeros for the polynomials Pn. 50

Finally, in Section 4 we discus some possible extensions of the results 51

2. Algebraic properties of the polar Jacobi polynomials 52

Let us start by summarizing some basic properties of the Jacobi orthogonal polynomi- 53

als to be used in the sequel. 54

Proposition 1. Let
(

P(α,β)
n (z)

)
be the classical monic Jacobi orthogonal polynomials sequence. 55

The following statements hold: 56

1. Three-term recurrence relation. 57

P(α,β)
n+1 (z) = (z − βn)P(α,β)

n (z)− γnP(α,β)
n−1 (z), n = 0, 1, ...., (7)

with initial condition P(α,β)
0 (z) = 1, and recurrence coefficients 58

βn =
β2 − α2

(α + β + 2n)(α + β + 2n + 2)
, γn =

4n(α + n)(β + n)(α + β + n)
(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)

.
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2. First structure relation. 59

(1 − z2)
d
dz

P(α,β)
n (z) = −nP(α,β)

n+1 (z) + β̂nP(α,β)
n (z) + γ̂nP(α,β)

n−1 (z), n = 0, 1, ...., (8)

with coefficients 60

β̂n =
2n(α − β)(α + β + n + 1)

(α + β + 2n)(α + β + 2n + 2)
, γ̂n =

4n(α + n)(β + n)(α + β + n)(α + β + n + 1)
(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)

.

3. Second structure relation. 61

P(α−1,β−1)
n+1 (z) = P(α,β)

n+1 (z) + β̃nP(α,β)
n (z) + γ̃nP(α,β)

n−1 (z), n = 0, 1, ...., (9)
62

β̃n =
(2n + 2)(α − β)

(α + β + 2n)(α + β + 2n + 2)
, γ̃n = − 4n(n + 1)(α + n)(β + n)

(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)
.

4. Squared Norm. For every n ≥ 0, 63∥∥∥P(α,β)
n (z)

∥∥∥2
=
∫

γ

(
P(α,β)

n (z)
)2

ω(z; α, β) dz =
4nn!Γ(α + n + 1)Γ(β + n + 1)Γ(α + β + n + 1)

Γ(α + β + 2n + 1)Γ(α + β + 2n + 2)
.

(10)
5. Second-order difference equation. For every n ≥ 0, 64

(1 − z2)
d2

dz2 P(α,β)
n (z) + (β − α − z(α + β))

d
dz

P(α,β)
n (z) = −n(α + β + n + 1)P(α,β)

n (z).
(11)

6. Forward shift operator. 65

d
dz

P(α,β)
n (z) = nP(α+1,β+1)

n−1 (z), n = 0, 1, ...., (12)

7. Asymptotic formula. Let z ∈ C \ [−1, 1]. Put φ(z) = z +
√

z2 − 1 where the branch of the 66

square root is chosen so that |z +
√

z2 − 1| > 1 for z ∈ C \ [−1, 1]. Then 67

P(α,β)
n (z) =

φn(z)√
n

(
c(α, β, z) +O(n−1)

)
, (13)

where c(α, β, z) is a function of α, β and x independent of n. The relation holds uniformly on 68

compact sets of C \ [−1, 1]. 69

Let us obtain the algebraic relations between the Jacobi polynomials and the polar 70

Jacobi polynomials. 71

Lemma 1. For any α, β, ξ ∈ C. The polar Jacobi polynomials can be written in terms of the Jacobi 72

polynomials as follows: 73

Pn(z) =
P(α−1,β−1)

n+1 (z)− P(α−1,β−1)
n+1 (ξ)

z − ξ
(14)

=
1

α + β + n

[
(z + ξ)

d
dz

P(α,β)
n (z) +

ξ2 − 1
z − ξ

(
d
dz

P(α,β)
n (z)− d

dz
P(α,β)

n (ξ)

)
+(α + β)P(α,β)

n (z) +
α − β + ξ(α + β)

z − ξ

(
P(α,β)

n (z)− P(α,β)
n (ξ)

)]
. (15)

Therefore 74

(z − ξ)Pn(z) = P(α,β)
n+1 (z) + β̃nP(α,β)

n (z) + γ̃nP(α,β)
n−1 (z)− P(α−1,β−1)

n+1 (ξ). (16)
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Proof. From (6) we have 75

(n + 1)P(α,β)
n (z) =

d
dz

((z − ξ)Pn(z)),

therefore, by using the forward shift operator (12), we have 76

(z − ξ)Pn(z) = (n + 1)
∫ z

ξ
P(α,β)

n (z) dz =
∫ z

ξ

d
dz

(
P(α−1,β−1)

n+1 (z)
)

dz. (17)

From (17) the identity (14) follows. From (14) expression and using the second structure 77

relation (9) the expression (16) follows. Let us now to prove (15). 78

By using the second-order differential operator and the forward shift operator of the 79

Jacobi polynomials, we obtain 80

(1 − z2)
d
dz

P(α,β)
n (z) + (β − α − z(α + β))P(α,β)

n (z) = −(α + β + n)P(α−1,β−1)
n+1 (z). (18)

By using the differential equation (18) and the identity 81

f (z)g(z)− f (ξ)g(ξ)
z − ξ

=
f (z)− f (ξ)

z − ξ
g(z) + f (ξ)

g(z)− g(ξ)
z − ξ

,

then (15) follows and hence the result holds. 82

The following additional property of orthogonality holds. 83

Theorem 1. The polar Jacobi polynomial Pn with pole ξ ∈ C fulfills the following property of 84

orthogonality: 85

∫
γ

(
Pn(z) + (z − ξ)

d
dz

Pn(z)
)

P(α,β)
m (z)ω(z; α, β)dz =


0, m ̸= n,

(n + 1)
∥∥∥P(α,β)

n (z)
∥∥∥2

, m = n.
(19)

Furthermore, if n > 1, then 86

∫
γ
(z− ξ)Pn(z)P(α,β)

m (z)ω(z; α, β)dz =



−Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

P(α−1,β−1)
n+1 (ξ), m = 0,

0, 0 < m < n − 1,

γ̃n

∥∥∥P(α,β)
n−1 (z)

∥∥∥2
, n − 1 = m,

β̃n

∥∥∥P(α,β)
n (z)

∥∥∥2
, n = m,∥∥∥P(α,β)

n+1 (z)
∥∥∥2

, n + 1 = m,

0, n + 1 < m.
(20)

Proof. Taking into account (6) we have 87∫
γ

(
Pn(z) + (z − ξ)

d
dz

Pn(z)
)

P(α,β)
m (z)ω(z; α, β) dz = (n+ 1)

∫
γ

P(α,β)
n (z)P(α,β)

m (z)ω(z; α, β) dz.

So, the first property of orthogonality follows. By using the relation (16) and considering the 88

property of orthogonality of the Jacobi polynomials, the second property of orthogonality 89

follows. Hence, the result holds. 90
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Theorem 2. The sequence of polar Jacobi polynomials (Pn) with pole ξ ∈ C satisfies the following 91

recurrence relation: 92

Pn+1(z) = zPn(z) + anPn(z) + bnPn−1(z) + P(α−1,β−1)
n+1 (ξ), n = 0, 1, ..., (21)

with initial conditions P−1(z) = 0, P0(z) = 1, and coefficients 93

an =
(α + β − 2)(α − β)

(α + β + 2n)(α + β + 2n + 2)
, bn = − 4(n + 1)(α + n)(β + n)(α + β + n − 1)

(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)
.

Proof. Let the sequence (νn,k) be such that 94

(z − ξ)Pn(z) =
n+1

∑
k=0

νn,kPk(z).

Then by using (6) we obtain 95

(z − ξ)
(

Pn(z) + (n + 1)P(α,β)
n (z)

)
= (z − ξ)

(
Pn(z) + ((z − ξ)Pn(z))′

)
=

n+1

∑
k=0

νn,k

(
Pk(z) + (z − ξ)

d
dz

Pk(z)
)

. (22)

By the property of orthogonality (19), we have 96

n+1

∑
k=0

vn,k

∫
γ

(
Pk(z) + (z − ξ)

d
dz

Pk(z)
)

P(α,β)
m (z)ω(z; α, β) dz = αn,m(m + 1)

∥∥∥P(α,β)
m (z)

∥∥∥2
,

(23)
for m = 0, 1, ..., n. 97

On the other hand, let us denote 98

In,m =
∫

γ
(z − ξ)P(α,β)

m (z)
(

Pn(z) + (n + 1)P(α,β)
n (z)

)
ω(z; α, β) dz.

From the orthogonality of the Jacobi polynomials and the property of orthogonality (20) 99

we get 100

In,m =



−P(α−1,β−1)
n+1 (ξ)

Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

, m = 0,

0, 0 < m < n − 1,

−γ̃n(α + β + n − 1)
∥∥∥P(α,β)

n−1 (z)
∥∥∥2

, n − 1 = m(
2 − α − β

2
β̃n − ξ(n + 1)

)∥∥∥P(α,β)
n (z)

∥∥∥2
, n = m.

(24)

Thus, multiplying (22) by P(α,β)
m (z), integrating over γ, and using (23) and (24), we obtain 101

νn,m =
In,m

(m + 1)
∥∥∥P(α,β)

m (z)
∥∥∥2 =



−P(α−1,β−1)
n+1 (ξ), m = 0,

0, 0 < m < n − 1,

−bn, m = n − 1,

2 − α − β

2(n + 1)
β̃n − ξ, m = n.

The expression (21) is obtained after a straightforward calculation. 102

A direct consequence of this result is the following. 103
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Corollary 1 (The polar ultraspherical case). The sequence of symmetric polar Jacobi polynomials 104

with pole ξ ∈ C, i.e., the sequence of polar ultraspherical polynomial with pole ξ ∈ C satisfies, 105

namely Pn, the recurrence relation: 106

Pn+1(z) = zPn(z)−
(n + 1)(2α + n − 1)

(2α + 2n − 1)(2α + 2n + 1)
Pn−1(z) + P

(α−1,α−1)
n+1 (ξ), n = 0, 1, ...,

(25)
with initial conditions P−1(z) = 0, P0(z) = 1. 107

Another direct consequence is due the fact when one, or both, of the parameters is a 108

negative integer, then we can factorize the Jacobi polynomial. In fact, 109

P(−k,β)
n (z) =(z − 1)kP(k,β)

n−k , (26)

P(α,−k)
n (z) =(z + 1)kP(α,k)

n−k . (27)

Remark 1. Since in some results we will consider the polar Jacobi polynomials with different 110

parameters, and poles. To avoid such possible confusion, we will denote by Pn(z; α, β; ξ) the polar 111

Jacobi polynomial of degree n, parameters α and β, and pole at ξ. 112

Corollary 2. [The factorization] For any positive integer k, the following identities hold: 113

Pn+k(z;−k, β; 1) =(z − 1)kPk+1,β−1
n (z) (28)

=(z − 1)k
(
(z − 1)Pn−1(z; k + 2, β; 1) + Pk+1,β−1

n (1)
)

, (29)

Pn+k(z; α,−k;−1) =(z + 1)kPα−1,k+1
n (z) (30)

=(z + 1)k
(
(z + 1)Pn−1(z; α, k + 2;−1) + Pα−1,k+1

n (−1)
)

. (31)

Moreover, the recurrence coefficients satisfy the relations: 114

an+k(−k, β; 1) = an−1(k + 2, β; 1), bn+k(−k, β; 1) = bn−1(k + 2, β; 1),

and 115

an+k(α,−k;−1) = an−1(α, k + 2;−1), bn+k(α,−k;−1) = bn−1(α, k + 2;−1).

Proof. The identities (28), (29), (30) and (31) follow by using the factorization of the Jacobi 116

polynomials (26) and (27). In order to obtain the relation between the recurrence coefficients 117

defined in Theorem 2, we must use the former factotization(s) and after a straightforward 118

calculations the identities follow. 119

The last result of this section is due the parity relation of the Jacobi polynomials, i.e. 120

P(α,β)
n (z) = (−1)zP(β,α)

n (−z). (32)

Lemma 2. For any ξ ∈ C, the following identity holds: 121

Pn(z; α, β; ξ) = (−1)nPn(−z; β, α;−ξ). (33)

Proof. Starting from 14 and using (32) we have 122

Pn(z; α, β; ξ) =
Pα−1,β−1

n+1 (z)− Pα−1,β−1
n+1 (ξ)

z − ξ
= (−1)n+1 Pβ−1,α−1

n+1 (−z)− Pβ−1,α−1
n+1 (−ξ)

z − ξ

=(−1)n Pβ−1,α−1
n+1 (−z)− Pβ−1,α−1

n+1 (−ξ)

−z − (−ξ)
= (−1)nPn(−z; β, α;−ξ).
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123

3. Zero location 124

Finding the roots of polynomials is a problem of interest in both mathematics and in 125

areas of application such as physical systems, which can be reduced to solving certain equa- 126

tion. There are very interesting geometric relationships between the roots of a polynomial 127

fn(z) and those of f ′n(z). The most important result is the following. 128

Theorem 3 (The Gauß-Lucas theorem [15]). Let fn(z) ∈ C[z] be a polynomial of degree at least 129

one. All zeros of f ′n(z) lie in the convex hull of the zeros of the zeros of fn(z). 130

In this section we are going to study the zero distribution for the polar Jacobi polyno- 131

mials. The next useful result, that was obtained by G. Szegő, let us estimate where such 132

zeros are located. 133

Theorem 4 (Szegő’s theorem [20], [8]). Let a(z) and b(z) be the polynomials: 134

a(z) =
n

∑
ℓ=0

aℓ

(
n
ℓ

)
zℓ, b(z) =

n

∑
ℓ=0

bℓ

(
n
ℓ

)
zℓ.

If the zeros of a(z) lie in a closed disk D and λ1, ..., λn are the zeros of b(z), then the zeros of the 135

“composition” of the two 136

c(z) =
n

∑
ℓ=0

aℓbℓ

(
n
ℓ

)
zℓ,

has the form λℓγℓ, where γℓ ∈ D. 137

By using this result we are going to locate the circle where all the zeros of the polar 138

Jacobi are located. 139

Theorem 5. For any ℜα,ℜβ > −1 and ξ ∈ C, the zeros of Pn(z; α, β; ξ) lie inside the closed disk 140

D(0, 2 + |ξ|). 141

Proof. Starting from (6) and assuming that 142

a(z) = P(α,β)
n (w) =

n

∑
k=0

µkωk, c(z) = Pn(z; α, β; w) =
n

∑
k=0

ηkωk,

where w := z − ξ, then ηk = (n + 1)/(k + 1)µk. In order to apply Szegő’s theorem, we 143

consider 144

b(z) =
n

∑
k=0

(
n
k

)
n + 1
k + 1

wk =
n

∑
k=0

(
n + 1
k + 1

)
wk =

(w + 1)n+1 − 1
w

.

If b(w1) = 0 then |w1 + 1| = 1, so |z1| ≤ 2 + |ξ|. Moreover, if a(z2) = 0 then |z2| ≤ 1. 145

Therefore, combining these inequalities and applying Szegő’s theorem one gets that if 146

c(z3) = 0 then |z3| ≤ 2 + |ξ| and hence the result follows. 147

In Figure 1 we illustrate for one hand how accurate the Theorem 5 is, and for the other, 148

we show the behavior of the zeros of the same polar Jacobi polynomial when the pole 149

travels along a specific circle. 150

In Figure 2 we illustrate an example of Jacobi polar polynomials where the parameters 151

ℜα ≤ −1 or ℜβ ≤ −1, therefore the zeros of the Jacobi polynomial can move away from the 152

interval [−1, 1] in a somewhat uncontrolled way. Therefore Theorem 5 cannot be applied in 153

such a cases. However, observe that in the considered example −2 < ℜ(α + β) = −1.95 < 154

−1. 155
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The next theorem gives the location of the zeros of the polar Jacobi polynomial of 156

degree n and its multiplicity, or equivalently, the location of source points and its corre- 157

sponding strength.

x

y

2+
|ξ|

−4 −3 −2 −1 1 2 3 4

x

y

2+
|ξ|

−4 −3 −2 −1 1 2 3 4

Figure 1. Left: Zeros of the polar Jacobi polynomial P30(z; 1/2, 2; 3 exp(2πkI/30)) for k = 0, 1, ..., 29.
Right: Zeros of the polar Jacobi polynomial P30(z;

√
3, π; 3 exp(2πkI/23)) for k = 0, 1, ..., 22.

158

x

y

2+
|ξ|

−2 −1 1 2

x

y

2+
|ξ|

−2 −1 1 2

Figure 2. Left: Zeros of the polar Jacobi polynomial P2(z;−1/2 + I,−1.45 − I/2; exp(2πkI/30)) for

k = 0, 1, ..., 29 (dots) and zeros of the Jacobi polynomials P(−1/2+I,−1.45−I/2)
2 (z) (circles). Right: Zeros

of the polar Jacobi polynomial Pn(z;−1/2 + I,−1.45 − I/2; exp(2πkI/30)) for k = 0, 1, ..., 29 (gray

dots) and zeros of the Jacobi polynomials P(−1/2+I,−1.45−I/2)
n (z) (+,×, and circles) for k = 0, 1, ..., 29,

n = 3, 4, 5.

Theorem 6. For any ℜα,ℜβ > −1 and ξ ∈ C. The following statements hold: 159

1. If ζ ∈ C∗ is a zero of Pn(z; α, β; ξ), then z = −ζ is a zero of Pn(z; β, α;−ξ). 160

2. If ζ ∈ C∗ is a zero of P(α,β)
n (z), then ζ is a zero of Pn. 161

3. The zeros of Pn have multiplicity at most 2 and their multiple zeros are located on [−1, 1]. 162

4. All the zeros of Pn are located on the curve 163

Zn(ξ) =
{

z ∈ C : P(α−1,β−1)
n+1 (z) = P(α−1,β−1)

n+1 (ξ)
}
\ {ξ}. (34)

Proof. The first statement holds true due (34), the second statement holds true due (6), and 164

the forth statement holds true due (14). 165
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Assume ω is a zero Pn of multiplicity greater than two then, by (6), ω is a zero of 166

P(α,β)
n and also a zero of

(
P(α,β)

n

)′
; thus ω is a zero of multiplicity 2 of P(α,β)

n . This is a 167

contradiction since the zeros of the Jacobi polynomials are all simple. Therefore, statements 168

3 holds true. 169

Remark 2. • Observe that the zeros of Pn do not have to be simple. Let ξ+ = (1 + 2
√

6)/5 or 170

ξ− = (1 − 2
√

6)/5, then the polar polynomial of degree two P2(z; 0, 1, ξ+) =
(

z − 1−
√

6
5

)2
, 171

or P2(z; 0, 1, ξ−) =
(

z − 1+
√

6
5

)2
. 172

• When the parameters are nor standard, i.e., ℜα < −1 or ℜβ < −1 then, by Corollary 2 then 173

statement 3 of Theorem 6 is no longer true. For example if α = −4, β = 1 > 0, and n = 5, 174

then P5(z;−4, 1, 1) = (z − 1)4(z − 5/7). 175

We can establish the following result concerning the boundedness of the zeros of the 176

polar polynomials. 177

Lemma 3. Given ξ ∈ C let us define the two numbers ∆ξ := sup{|ξ − z| : z ∈ [−1, 1]}, and 178

δξ := inf{|ξ − z| : z ∈ [−1, 1]}. Then 179

1. All zeros of the polar Jacobi polynomials with pole ξ are contained in |z| ≤ ∆ξ + 1. 180

2. If δξ > 1, the zeros of the polar Jacobi polynomials with pole ξ are simple and contained in the 181

exterior of the ellipse |z + 1|+ |z − 1| = 2α, where 1 < α < δξ . 182

Proof. By (14) the zeros of Pn(z) are located in Zn(ξ). Since
∣∣∣P(α−1,β−1)

n+1 (ξ)
∣∣∣ < ∆n+1

ξ , they 183

are contained in the interior of the set
∣∣∣P(α−1,β−1)

n+1 (z)
∣∣∣ = ∆n+1

ξ . It is known the zeros of 184

P(α−1,β−1)
n+1 (z), namely xn+1,k, satisfy |xn+1,k| ≤ 1. Therefore, for any t ∈ C, such that 185

|t| > 1 + ∆ξ , we have 186

∣∣∣P(α−1,β−1)
n+1 (z)

∣∣∣ = n

∏
k=0

|z − xn+1,k| ≥
n

∏
k=0

∣∣|z| − |xn+1,k|
∣∣ > ∆n+1

ξ ,

hence the first statement holds. 187

About the second statement, let z be such that |z + 1| + |z − 1| = 2α. From the 188

well-known arithmetic-geometric mean inequality we have 189

∣∣∣P(α−1,β−1)
n+1 (z)

∣∣∣ ≤ ( 1
n + 1

n

∑
k=0

|z − xn+1,k|
)n+1

< αn+1.

If ω is a zero of Pn, from (34) we get 190∣∣∣P(α−1,β−1)
n+1 (ω)

∣∣∣ = ∣∣∣P(α−1,β−1)
n+1 (ξ)

∣∣∣ = n

∏
k=0

|ξ − xn+1,k| > δn+1
ξ > αn+1.

Therefore, the result holds. 191

The last result is about the asymptotic behavior of the zeros of the polar Jacobi polyno- 192

mials. 193

Theorem 7 (Theorem 22 in [7]). The accumulation points of zeros of (Pn) are located on the set 194

Z (ξ) ∪ [−1, 1], where Z (ξ) is the ellipse 195

Z (ξ) = {z ∈ C : z = cosh(log |φ(ξ)|+ iθ), 0 ≤ θ < 2π} =
{

z ∈ C :
∣∣∣z +√z2 − 1

∣∣∣ = |φ(ξ)|
}

,
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where φ(z) = z +
√

z2 − 1. 196

4. Concluding remarks 197

The Jacobi polynomials are part of the scheme of orthogonal hypergeometric functions, 198

and since practically all the elements used in this work are known within this scheme, 199

therefore, the work could be extended to the classical polynomials without much difficulty. 200

It would be natural to consider doing analogous work for discrete classical polynomials by 201

replacing the derivative operator by the backward (or forward) difference operator. 202
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