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Abstract: A linear functional u is classical if there exist polynomials, ϕ and ψ, with 1

deg ϕ ≤ 2, deg ψ = 1, such that D(ϕ(x)u) = ψ(x)u, where D is certain differential, 2

or difference, operator. The polynomials orthogonal with respect to the linear functional u 3

are called classical orthogonal polynomials. In the theory of orthogonal polynomials, a correct 4

characterization of the classical families is of great interest. In this work, on one hand, we 5

present the different Laguerre-type families, which are those for which deg ϕ = 1, obtaining 6

for all of them new algebraic identities such as structure formulas, orthogonality properties 7

as well as new Rodrigues formulas; and for the other, we present a new characterization 8

theorem for such Laguerre-type families. 9

Keywords: Recurrence relation; Characterization Theorem; Classical orthogonal polyno- 10

mials; Laguerre-type polynomials; 11

MSC: 42C05; 33C45; 33D45 12

1. Introduction 13

Orthogonal polynomials (pn(x))n associated with a measure on the real line, i.e., 14∫
R

pm(x)pn(x)dµ(x) = d2
n δmn,

satisfy a three-term recurrence equation 15

xpn(x) = αn pn+1(x) + βn pn(x) + γn pn−1(x), (1)

where p−1(x) = 0, p0(x) = 1 and, according to the Favard theorem (cf. [6, p. 21]), if γn ̸= 0 16

for all n ∈ N this recurrence completely characterizes such a polynomial sequence. 17

Due to the property of orthogonality of such polynomial sequence, it is well-known 18

the following relation between the recurrence coefficients: 19

γn = αn−1
d2

n

d2
n−1

, n = 1, 2, ..., (2)

where d2
n is the squared norm of pn. 20

Such polynomial sequence is said to be classical if it is orthogonal with respect to a 21

linear functional u : P → C which fulfills the Pearson-type equation 22

D(ϕ(x)u) = ψ(x)u, (3)

where ϕ is a polynomial of degree at most 2, ψ is a polynomial of degree 1, and D is the 23

differential operator in the continuous case, the forward (∆) or backward (∇) difference 24

operator in the discrete case, and the Hahn operator (Dq) in the q-discrete case. 25
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Remark 1. Note that if a linear functional u fulfills (3) then it also fulfills the Pearson-type equation 26

[9] 27

D∗(ϕ∗(x)u) = ψ∗(x)u,

where 28

• In the continuous case D∗ = D , so ϕ∗(x) = ϕ(x) and ψ∗(x) = ψ(x). 29

• In the discrete case ϕ∗(x) = ϕ(x) + ψ(x), ψ∗(x) = ψ(x), ∆∗ = ∇, ∇∗ = ∆. 30

• In the q-discrete case, ϕ∗(x) = ϕ(x) + (q − 1)x ψ(x), ψ∗(x) = qψ(x), and D∗
q = Dq−1 . 31

Definition 1. The polynomial sequence (pn(x))n is a Laguerre-type Orthogonal Polynomial 32

Sequence (in short Laguerre-type sequence) if it is classical, and deg ϕ = 1 or deg ϕ∗ = 1. 33

A fundamental role is played by the so-called characterization Theorems, i.e., the The- 34

orems which collect those properties that completely define and characterize the classical 35

orthogonal polynomials. One of the many ways to characterize a family of continuous 36

classical polynomials (Hermite, Laguerre, Jacobi, and Bessel), which was first posed by R. 37

Askey and proved by W. A. Al-Salam and T. S. Chihara [1] (see also [17]), is the structure 38

relation 39

ϕD pn(x) = ãn pn+1(x) + b̃n pn(x) + c̃n pn−1(x), (4)

where c̃n ̸= 0. 40

A. G. Garcia et al. proved in [11] that the relation (4) also characterizes the discrete 41

classical orthogonal polynomials (Hahn, Krawtchouk, Meixner, and Charlier polynomials) 42

when the derivative is replaced by the forward difference operator ∆. 43

Later on, J. C. Medem et al. [18] characterized the orthogonal polynomials which 44

belong to the q-Hahn class by a structure relation obtained from (4) replacing the derivative 45

by the q-difference operator Dq (see also [2–4]). One of the most general characterization 46

theorem for the q-polynomials in the q-quadratic lattice was done in [8]. 47

The structure of this work is the following: in Section 2 we introduce some notations 48

and definitions used throughout the paper. In Section 3 we present the main results about 49

the Laguerre-type polynomials as well as the algebraic properties supporting the results 50

presented. 51

2. Preliminaries 52

In this section we will give a brief survey of the operational calculus that we will use 53

in the rest of the paper as well as some basic notation we need to prove the results. 54

2.1. Basic concepts and results 55

We adopt the following set notations: N0 := {0} ∪N = {0, 1, 2, . . .}, and we use the 56

sets Z, R, C which represent the integers, real numbers, and complex numbers respectively. 57

Let P be the linear space of polynomial functions in C (in the following we will refer to 58

them as polynomials) with complex coefficients and P∗ be its algebraic dual space, i.e., P∗
59

is the linear space of all linear applications u : P → C. In the following, we will call the 60

elements of P∗ as functionals. In general, we will represent the action of a linear functional 61

over a polynomial by 62

⟨u, π⟩, u ∈ P∗, π ∈ P.

Therefore, a functional is completely determined by a sequence of complex numbers 63

⟨u, xn⟩ = un, n = 0, 1, ..., the so-called moments of the functional. 64
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Definition 2. Let u ∈ P∗ be a functional. We say that u is a quasi-definite functional if there 65

exists a polynomial sequence (pn) which is orthogonal with respect to u, i.e. 66

⟨u, pm pn⟩ = knδmn, kn ̸= 0, n = 0, 1, ...,

where δmn is the Kronecker delta. 67

In order to obtain our derived identities, we rely on properties of the shifted factorial, 68

or Pochhammer symbol, (a)n, and the q-shifted factorial, or q-Pochhammer symbol, (a; q)n. 69

For any n ∈ N0, a, q ∈ C, the shifted factorial is defined as 70

(a)n = a(a + 1) · · · (a + n − 1),

the q-shifted factorial is defined as 71

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).

We will also use the common notational product conventions 72

(a1, ..., ak)n = (a1)n · · · (ak)n,

(a1, ..., ak; q)n = (a1; q)n · · · (ak; q)n.

The hypergeometric series rFs is defined for z ∈ C such that |z| < 1, s, r ∈ N0, as [14, 73

(1.4.1)] 74

rFs

(
a1, ..., ar

b1, ..., bs
; z

)
:=

∞

∑
k=0

(a1, ..., ar)k
(b1, ..., bs)k

zk

k!
, (5)

and he basic hypergeometric series rϕs is defined for q, z ∈ C such that |q|, |z| < 1, s, r ∈ N0, 75

as [14, (1.10.1)] 76

rϕs

(
a1, ..., ar

b1, ..., bs
; q, z

)
:=

∞

∑
k=0

(a1, ..., ar; q)k
(q, b1, ..., bs; q)k

(
(−1)kq(

k
2)
)1+s−r

zk. (6)

Observe that both, hypergeometric and basic hypergeometric series, are entire functions 77

of z for s + 1 > r, are convergent for |z| < 1 for s + 1 = r, and divergent unless it is 78

terminating for s + 1 < r. 79

Note that when we refer to a hypergeometric or basic hypergeometric function with 80

arbitrary argument z, we mean that the argument does not necessarily depend on the other 81

parameters, namely the aj’s, bj’s. However, for the arbitrary argument z, it very-well may 82

be that the domain of the argument is restricted, such as for |z| < 1. 83

The next theorem [6, p. 8] is useful if one works with linear functional. 84

Theorem 1. Let u ∈ P∗ be a functional with moments (un). Then, u is quasi-definite if and only 85

if the Hankel determinants Hn := det
(
ui+j

)n
i,j=0 ̸= 0, n = 0, 1, .... 86



Version December 23, 2024 submitted to Mathematics 4 of 17

2.2. Definition of the operators in P and P∗
87

Next, we will define the backward and forward difference operators as well the so 88

called q-derivative operator, or Hahn operator. 89

∆ f (x) = f (x + 1)− f (x),

∇ f (x) = f (x)− f (x − 1),

Dq f (x) =
f (qx)− f (x)

x(q − 1)
, q ̸= 1, x ̸= 0.

Since the polynomial sequences depend on n, x and its parameters and we are going to 90

focus more on the variable n along this work (n as a discrete variable) than in the variable 91

x, we need to consider along the paper as well the operators ∆n and ∇n that are defined 92

analogously as the operators ∆ and ∇, i.e. 93

∇n f (n; x) = f (n, x)− f (n − 1, x), ∆n f (n; x) = f (n + 1, x)− f (n, x).

Definition 3. Let u ∈ P∗ and π ∈ P, let ∆u, ∇u and D∗
q u be the linear functionals defined by 94〈

d
dx

u, π

〉
=− ⟨u, π′⟩, (7)

⟨∆u, π⟩ =− ⟨u,∇π⟩, (8)

⟨∇u, π⟩ =− ⟨u, ∆π⟩, (9)

⟨D∗
q u, π⟩ =− q⟨u, Dqπ⟩. (10)

Notice that we use the same notation for the operators on P and P∗. Whenever it is 95

not specified the linear space where an operator acts, it will be understood that it acts on 96

the polynomial space P. 97

3. The Laguerre-type polynomials 98

In this section, we are going to present all the identities of the different Laguerre-type 99

families. First, we are going to show some theoretical aspects and results related to them. 100

Lemma 1. Let u ∈ P∗ be a quasi-definite classical functional, let (pn) be the polynomial sequence 101

orthogonal with respect to u. If (pn) is a Laguerre-type Classical Orthogonal Polynomial Sequence 102

then, there exists a numerical sequence (λn)n so that (λn pn)n fulfills the recurrence relation (1) for 103

which γ0 = 0 and αn + βn + γn = c for all n ∈ N, where c is a root of ϕ(x), or ϕ∗(x). 104

Proof. To prove this result it is enough to consider all the families of the Hypergeometric 105

orthogonal polynomials scheme and the basic Hypergeometric orthogonal polynomials 106

scheme (see e.g. [14,18,19]) that are of Laguerre-type, i.e., deg ϕ = 1 or deg ϕ∗ = 1. These 107

families are the Laguerre (L), Charlier (C), Meixner (M), big q-Laguerre (bqL), q-Meixner 108

(qM), little q-Laguerre (lqL), q-Laguerre (qL), q-Charlier (qC), and the Stieltjes-Wigert 109

(SW) polynomials. 110

Once we obtain all the Laguerre-type families it is enough to verify that the conditions 111

established for each of the families (see Table 1) are satisfied. Observe that value of pn(c), 112

where c is a zero of ϕ or ϕ∗, is known (see [15,20]), and these values are non-zero so one 113

can define λn as 1/pn(c). 114

Remark 2. Note that Lemma 1 is not a Characterization Theorem since other families of the basic 115

Hypergeometric orthogonal polynomials scheme fulfill the condition about the recurrence coefficients, 116
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in short (RC), i.e. αn + βn + γn is a constant, however they are not Laguerre-type families, for 117

example, the Askey-Wilson polynomials (see [14, (14.1.4)]). 118

In the next result we write the recurrence relation as a structure-type relation on n. 119

Lemma 2. Let (pn)n be a Laguerre-type polynomial sequence. For any x ∈ C the recurrence 120

relation (1) can be written as: 121

ϕ(x)pn(x) = αn∆n pn(x)− γn∆n pn−1(x), (11)

if deg ϕ = 1; and 122

ϕ∗(x)pn(x) = αn∆n pn(x)− γn∆n pn−1(x),

if deg ϕ∗ = 1. 123

Proof. Let us assume that deg ϕ = 1, i.e., ϕ(x) = x − c, then by Lemma 1 we have that 124

the coefficients of the recurrence relation (1) fulfill αn + βn + γn = c, then rewriting the 125

recurrence assuming this relation the result holds. The deg ϕ∗ = 1 case is analogous. 126

Remark 3. For the sake of convenience, we are going to replace x − c by ϕ(x) assuming that 127

deg ϕ = 1. In the case that deg ϕ ̸= 1 and deg ϕ∗ = 1, then one must replace ϕ by ϕ∗ in the 128

further results since such identities and results hold similarly. 129

We write the recurrence relation in the next result as a Sturm-Liouville form difference 130

equation on n. 131

Lemma 3. Let (pn)n be a Laguerre-type polynomial sequence. For any x ∈ C the recurrence 132

relation (1) can be written as: 133

ϕ(x)pn(x) = d2
n∇n

γn

d2
n

∆n pn(x), (12)

= d2
n∆n

αn

d2
n
∇n pn(x). (13)

Proof. Starting from (11), using (2) and taking into account the definition of ∇n and ∆n the 134

results follow. 135

Theorem 2. Let (pn)n be a Laguerre-type polynomial sequence. For any x ∈ C, the sequence 136

(∇n pn(x)) is orthogonal with respect to αn/d2
n, and the sequence (∆n pn(x)) is orthogonal with 137

respect to γn/d2
n. 138

Proof. Let us fix x ∈ C such that ω(x) ̸= 0. By Korovkin’s Theorem (see [16] or [12, 139

Theorem 2.1]) we have the following closure relation: 140

∞

∑
n=0

pn(x)pn(y)
d2

n
=

1
ω(x)

δ(x − y),

where ω is the weight function and both the left- and right-hand sides should be treated as 141

distributions. From this expression, using (13) and Abel’s lemma on partial sums [13, p. 142

313] for y ̸= x we obtain 143

0 =
∞

∑
n=0

ϕ(x)pn(x)pn(y)
d2

n
=

∞

∑
n=0

(
∆n

αn

d2
n
∇n pn(x)

)
pn(y) = −

∞

∑
n=0

αn

d2
n
∇n pn(x)∇n pn(y).
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Moreover, 144
∞

∑
n=0

αn

d2
n
∇n pn(x)∇n pn(x) =

ϕ(x)
ω(x)

.

The proof for the sequence (∆n pn(x)) is analogous. Hence the result follows. 145

Remark 4. Since we have the data for the Laguerre-type polynomials it is a straightforward 146

calculation to check that 1/d2
−1 = 0 (since γ0 = 0) and 147

lim
n→∞

αn

d2
n
= 0.

Theorem 3 (Characterization Theorem). Let (pn)n be an orthogonal polynomial sequence with 148

respect to ω, such that D(ϕω) = ψω, with deg ϕ = 1. For any x ∈ C such that ω(x) ̸= 0, the 149

following statements are equivalent: 150

1. (pn)n is a Laguerre-type polynomial sequence. 151

2. The polynomials sequence (∇n pn(x)) is orthogonal with respect to αn/d2
n. 152

3. The polynomial sequence (pn(x)) fulfills the second order difference equation 153

ϕ(x)pn(x) = αn∆n pn(x)− γn∆n pn−1(x),

which is equal to its structure-type relation. 154

4. The polynomial sequence (pn(x)) satisfies the Sturm-Liouville difference equations 155

ϕ(x)pn(x) = d2
n∇n

γn

d2
n

∆n pn(x) = d2
n∆n

αn

d2
n
∇n pn(x).

4. The families 156

Along this section we present several identities related to the different Laguerre-type 157

families. Since there are some relation among them (see Figure 1) we will present such 158

identities only for some of the families in order to avoid duplicities. We consider the 159

Laguerre, Meixner, Charlier, big q-Laguerre, little q-Laguerre and Stieltjes-Weigert cases. 160

Before presenting the main results let us show the relations between the families we 161

are going to consider with respect to the rest of the Laguerre-type families (see [7, p. 20], 162

[14, remark p. 526]): 163

pn(x; a, b, 1/q) =
1

(q/b; q)n
Mn(xq/a; 1/a,−b; q), (14)

pn(x; qα|1/q) =
(q; q)n

(qα+1; q)n
L(α)

n (−x; q), (15)

L(α)
n (x; q) =

1
(q; q)n

Cn(−x;−q−α; q), (16)

Sn(x/a, 1/q) =2ϕ0

(
q−n, 0;−; q,− x

a

)
=: ln(x; a), (17)

where the 0-Laguerre/Bessel polynomials (ln(x; a)) (see [5], [19, p. 244]). 164

4.1. The Laguerre poynomials 165

The Laguerre polynomials can be written in terms of hypergeometric series as [14, 166

§9.12] 167

L(α)
n (x) =

(α + 1)n

n! 1F1

(
−n

α + 1
; x

)
.
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L

M

C

bqL

qM

lqL

qL

qC

0LB

SW

Figure 1. Relations between the Laguerre-type families. The gray lines are the particular cases. The
black lines are the limiting cases.

In this case ϕ(x) = x, i.e., this is the a Laguerre-type family where the zero of ϕ is c = 0, 168

and L(α)
n (c) = (α + 1)n/n!. Taking this into account we can state the following result. 169

Lemma 4. For any α ∈ C and any n ∈ N0, the following identities hold: 170

∇nL(α)
n (x) =L(α−1)

n (x), (18)

αL(α)
n (x)− (n + 1)∆nL(α)

n (x) =xL(α+1)
n (x), (19)

αL(α)
n (x)− (n + α)∇nL(α)

n (x) =xL(α+1)
n−1 (x), (20)

∇αL(α)
n (x) =L(α)

n−1(x), (21)

(n + α − x)L(α)
n (x)− (α + n)∇αL(α)

n (x) =(n + 1)L(α−1)
n+1 (x), (22)

(n + 1 + α − x)L(α)
n (x)− x∆αL(α)

n (x) =(n + 1)L(α)
n+1(x), (23)

where ∆α f (x, α) = f (x, α + 1)− f (x, α), and ∇α f (x, α) = ∆α f (x, α − 1). 171

Proof. All these identities can be checked by identifying the polynomial coefficients on the 172

left and right-hand sides of each identity. Hence, the results follow. 173

A direct consequence of the former result is stated as follows. 174

Theorem 4. For any α ∈ C, any x ∈ C, x ̸= 0, and any n ∈ N0, the polynomial sequence 175(
L(α+k)

n (x)
)

k is orthogonal with respect to certain moment functional. 176
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Proof. By combining (21), (22) and (23) we have the following second order difference 177

equations: 178

nL(α)
n (x) =− (α + n)∇α∆αL(α)

n (x) + (α + n − x)∆αL(α)
n (x) (24)

=− x∆α∇αL(α)
n (x) + (α + n − x)∇αL(α)

n (x), (25)

which is connected with the Charlier polynomials case (see [14, (9.14.5)]). By using the 179

theory of Sturm-Liouville, the result holds. 180

Remark 5. Observe that one can construct, under certain condition on α and x, certain integral 181

representation for such moment functional. 182

From Lemma 4 we can deduce some new identities related to the Laguerre polynomi- 183

als. 184

Theorem 5. For any α ∈ C, and any n, k ∈ N0, the following Rodrigues-type identities hold: 185

L(α+k)
n (x) =

(α + k)n

xk (α + k)(α + k − 1)∇α · · · (α + 1)α∇α

L(α)
n+k(x)
(α)n+k

, (26)

L(α+k)
n (x) =

(−1)k(α + 1)n+k

n!xk ∇k
n

(n + k)!
(α + 1)n+k

L(α)
n+k(x), (27)

L(α)
n (x) =(−1)k (n + 1)α

xα
∆k

α
xα

(n − k + 1)k
L(α)

n−k(x), (28)

L(α)
n (x) =∆k

nL(α+k)
n−k (x), (29)

L(α+k)
n (x) =∆k

αL(α)
n+k(x). (30)

Proof. The first identity holds by mathematical induction on k after a straightforward 186

simplification and using (20) written in the following way: 187

n!
(α + k + 1)n

L(α+k)
n (x) =

(α + k)(α + k − 1)
x(n + 1)

∇α
(n + 1)!

(α + k)n+1
L(α+k−1)

n+1 (x).

The second identity holds by mathematical induction on k after a straightforward simplifi- 188

cation and using (22) written in the following way: 189

n!
(α + k + 1)n

L(α+k)
n (x) = −α + k

x
∇n

(n + 1)!
(α + k)n+1

L(α+k−1)
n+1 (x).

The third identity holds by mathematical induction on k after a straightforward simplifica- 190

tion and using (23) written in the following way: 191

xαL(α)
n (x) = −(n + 1)α∆n

xα

(n)α
L(α)

n−1(x).

The fourth and the fifth relation hold from (18) and (21). 192

The last result, but not least interesting, concerning the operators associated with the 193

Laguerre polynomials is as follows. 194

Proposition 1. The laguerre polynomials fulfill the following identity: 195

(2+ a− x)L(α)
n (x)+ (−4− 2a+ 3x)(L(α)

n (x))′+(2+ a− 3x)(L(α)
n (x))′′+ x(L(α)

n (x))′′′ = (n+ 1)L(α+1)
n+1 (x).
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Proof. The identity follows using the identities: 196

L(α)
n (x)− (L(α)

n (x))′ =L(α+1)
n (x), (31)

x(L(α)
n (x))′ − (x − α)L(α)

n (x) =(n + 1)L(α−1)
n+1 (x), (32)

applying the first twice, and later the second one once mapping α 7→ α + 2. 197

4.2. The Charlier polynomials 198

The Charlier polynomials can be written in terms of hypergeometric series as [14, 199

§9.14] 200

Cn(x; a) = 2F0

(
−n,−x

−
;−1

a

)
.

In this case ϕ(x) = x and ϕ∗(x) = a, i.e., c = 0, and Cn(c; a) = 1. Taking this into account 201

we can state the following result. 202

Lemma 5. For any a ∈ C and any n ∈ N0, the following identities hold: 203

a∆nCn(x; a) =− x Cn(x − 1; a), (33)

nCn(x; a) + a(Cn(x; a))′ =(n + 1)Cn−1(x; a), (34)

(a − n)Cn(x; a) + n∇nCn(x; a) =a Cn(x + 1; a), (35)

(a − n − 1)Cn(x; a) + a∆nCn(x; a) =a Cn+1(x + 1; a). (36)

Proof. The ientity (34) is a direct consequences of the identity presented in Remark in [14, 204

p. 249] 205

(−a)n

n!
Cn(x; a) = L(x−n)

n (a).

The other identities can be checked by identifying the polynomial coefficients on the left 206

and right-hand sides of each identity. Hence, the results follow 207

From Lemma 5 we can deduce some new identities related to the Charlier polynomials. 208

Theorem 6. For any a ∈ C, and any n, k ∈ N0, the following Rodrigues-type identities hold: 209

Cn(x; a) =
(−a)k

(x + 1)k
∆k

nCn(x + k; a), (37)

Cn(x; a) =
n!
an ∆k

n
an−k

(n − k)!
Cn−k(x − k; a). (38)

Proof. The first identity is a direct consequence of (33); and the second is due the identity: 210

(n + 1)!∆n
an

n!
Cn(x; a) = an+1Cn+1(x + 1; a).

211

4.3. The Meixner polynomials 212

The Meixner polynomials can be written in terms of hypergeometric series as [14, 213

§9.10] 214

Mn(x; β, c) = 2F1

(
−n,−x

β
; 1 − 1

c

)
.
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In this case ϕ(x) = x and ϕ∗(x) = c(x + β), therefore we must consider two cases, c1 = 0, 215

and c2 = −β, for which we have Mn(c1; β, c) = 1, and Mn(c2; β, c) = 1/cn. Taking into 216

account Lemma 1 we can state the next result. 217

Lemma 6. The polynomial sequence (Mn(x; β, c)/Mn(c2; β, c))n fulfills the recurrence relation 218

(x + β)pn(x) = αMn pn+1(x)− (αMn + γM
n)pn(x) + γM

n pn−1(x),

with initial condition p0(x) = 1, 219

αMn =
n + β

c − 1
, γM

n =
nc

c − 1
,

and fulfills the second order difference equation 220

(x+ β)pn(x) = d2
n∆n

γM
n

d2
n
∇n pn(x) = d2

n∇n
αMn
d2

n
∆n pn(x) = γM

n∇n∆n pn(x)+ (αMn −γM
n)∆n pn(x).

As in the Laguerre polynomial case, the next result follows. 221

Lemma 7. For any β, c ∈ C, β ̸∈ {0, 2}, c ̸∈ {0, 1}, and any n ∈ N0, the following identities 222

hold: 223

βc
c − 1

∆n Mn(x; β, c) =x Mn(x − 1; β + 1, c), (39)

Mn(x; β, c) +
c

c − 1
∆n Mn(x; β, c) =

x + β

β
Mn(x; β + 1, c), (40)

Mn(x; β, c) +
1

c − 1
∇n Mn(x; β, c) =

x + β

β
Mn−1(x; β + 1, c), (41)

cβ(1 − β)

c − 1
∇β Mn(x; β, c) = xnMn−1(x − 1; β + 1, c), (42)

β(β − 1)c
(β + n)(c − 1)

Mn+1(x + 1; β − 1, c) =
(

x + β +
β(β − 1)

(β + n)(c − 1)

)
Mn(x; β, c)

+ (x + β)∆β Mn(x; β, c), (43)

(β − 1)(β − 2)c
(β − 1 + n)(c − 1)

Mn+1(x + 1; β − 2, c) =
(

x + β − 1 +
(β − 1)(β − 2)

(β − 1 + n)(c − 1)

)
Mn(x; β, c)

− (β − 1)(β − 2)
(β − 1 + n)(c − 1)

∇β Mn(x; β, c), (44)

∂

∂c
cn(β)n Mn(x; β, c) =

n(x + β)

c + n + β
cn(β + 1)n Mn−1(x; β + 1, c), (45)

c(1 − β)cn(β)nβMn+1(x; β − 1, c) =c(1 − c)
∂

∂c
cn(β)n Mn(x; β, c)

− ((c − 1)x + n − (n + 1)c + cβ)cn(β)nβMn(x; β, c)
(46)

Proof. All these identities can be checked by identifying the polynomial coefficients on 224

the left and right-hand sides of each identity and with the help of Wolfram Mathematica 225

13. 226

A direct consequence is the fact this polynomial sequence is orthogonal with respect 227

to the parameter β. 228

Theorem 7. For any β, c ∈ C, any x ∈ C, x ̸∈ {0,−β}, and any n ∈ N0, the polynomial 229

sequence
(

Mn(x; β + k, c)
)

k is orthogonal with respect to certain moment functional. 230
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Proof. By combining (42), (43) and (44) we have the following second order difference 231

equations: 232

nxMn(x; β, c)=
β(β−1)

c − 1
∇β∆β Mn(x; β, c)−

(
β(β−1)

c − 1
+(β + x)(β + n)

)
∆β Mn(x; β, c), (47)

which is connected with the Continuous Hahn polynomials case (see [14, (9.4.5)]). By using 233

the theory of Sturm-Liouville, the result holds. 234

Remark 6. • Note that in [10] the authors extended the orthogonality relations for the Meixner 235

polynomials thorough the orthogonality relations of the Continuous Hahn Polynomials. 236

• Observe that one can construct, under certain condition on the parameters, n and x, certain 237

integral representation for such moment functional. 238

From Lemma 7 we can deduce some new identities related to the Meixner polynomials. 239

Theorem 8. For any β, c ∈ C, and any n, k ∈ N0, the following Rodrigues-type identities hold: 240

Mn(x; β + k, c) =
(β)kck

(c − 1)k(x + 1)k
∇k

n Mn+k(x; β, c), (48)

Mn(x; β + k, c) =
(β)k

(1 − c)k(x + β)k(−c)n ∆k
n(−c)n+k Mn+k(x; β, c), (49)

Mn(x; β + k, c) =
ck(β + k − 1)(2 − k − β)

(c − 1)k(x + 1)k(n + 1)k
∇β · · · β(1 − β)∇β Mn+k(x + k; β, c),

(50)

cn(β + k)n Mn(x; β + k, c) =
(c + n + β + k)
(n + 1)k(x + β)k

∂

∂c
· · · (c + n + β + k)

∂

∂c
cn+k(β)n+k Mn+k(x; β, c).

(51)

Proof. The first identity holds by mathematical induction on k after a straightforward 241

simplification and using (39). The second identity holds by mathematical induction on k 242

after a straightforward simplification and using (41) written in the following way: 243

∆n(−c)n Mn(x; β, c) =
x + β

β
(1 − c)(−c)n Mn−1(x; β + 1, c).

The third identity holds by mathematical induction on k after a straightforward simplifica- 244

tion and using (42). The fourth and the fifth relation hold from (45). 245

The last result concerning the operators associated with the Meixner polynomials is as 246

follows. 247

Proposition 2. The following identity holds: 248

(βc + cx + c − x)
c

Mn(β, c, x)+
(
2βc2 + 2c2x + 2c2 − cx − x

)
(c − 1)c

∇Mn(β, c, x)

+
c(−2β + 3βc + 3cx + 3c − 3x − 2)

(c − 1)2 ∇2Mn(β, c, x))+
c2(β + x + 1)

(c − 1)2 ∇3Mn(β, c, x)

=
(β + n)(β + n + 1)

β
Mn+1(β + 1, c, x).

Proof. The proof follows after using an algorithm written in Wolfram Mathematica 13. 249



Version December 23, 2024 submitted to Mathematics 12 of 17

4.4. The big q-Laguerre polynomials 250

The big q-Laguerre polynomials can be written in terms of basic hypergeometric series 251

as [14, §14.11] 252

pn(x; a, b; q) = 3ϕ2

(
q−n, 0, x

aq, bq
; q, q

)
.

In this case ϕ(x) = (x− aq)(x− bq) and ϕ∗(x) = abq(1− x), i.e., c = 1, and pn(c; a, b; q) = 1. 253

Observe these polynomials are symmetric in the parameters a and b. Taking this into 254

account we can state the following result. 255

Lemma 8. For any a, b ∈ C, and any n ∈ N0, the following identities hold: 256

ϕ(1)qn ∆n pn(x; a, b; q) =(x − 1) pn(xq; aq, bq; q), (52)

(−1 + a)(−1 + b)qn+1 pn+1(x/q; a/q, b/q; q) =(abqn+1−aqn+1−bqn+1 + 1)pn(x; a, b; q)

+ α
bqL
n ∆n pn(x; a, b; q), (53)

(−1 + a)(−1 + b)qn+1 pn(x/q; a/q, b/q; q) =q(abqn−aqn−bqn + 1)pn(x; a, b; q)

+ qnγ
bqL
n ∇n pn(x; a, b; q), (54)

(a − 1)ϕ(1)Dq,a pn(x; a, b; q) =
a(1 − qn)

qn−1 (x − 1)pn−1(xq; aq, bq; q),

(55)

(a − 1)bqn+1(aq − 1)pn(x; a/q, b; q) = (aqn+1 − 1)(x − aq)Dq,a pn(x; a, b; q)

+((1 − aq)(x − (a − b + ab)qn+1) + (aqn+1 − 1)(x − aq))pn(x; a, b; q),
(56)

(a − 1)(aq − 1)(bqn+1 − 1) pn+1(x; a/q, b; q) =(1 − a)b(aq − 1)qn+1D1/q,a pn(x; a, b; q)

+ (aq − 1)(x + abqn+1 − a − bqn+1)pn(x; a, b; q)
(57)

where α
bqL
n and γ

bqL
n are the big q-Laguerre recurrence relation coefficients (see Table 1), and 257

Dq,a f (x, a) =
f (x, qa)− f (x, a)

a(q − 1)
.

Proof. All these identities can be checked by identifying the polynomial coefficients on 258

the left and right-hand sides of each identity and with the help of Wolfram Mathematica 259

13. 260

A direct consequence is the fact this polynomial sequence is orthogonal with respect 261

to the parameters a and b. 262

Theorem 9. For any a, b ∈ C, any x ∈ C, x ̸∈ {1, aq, bq}, and any n ∈ N0, the polynomial 263

sequences
(

pn(x; aqk, b; q)
)

k and
(

pn(x; a, bqk; q)
)

k are orthogonal with respect to certain moment 264

functional. 265

Proof. By combining (55), (56) and (57) we have the following second order difference 266

equations: 267

(x − 1)a(1 − qn)pn(x; a, b; q) =tn(a)D1/q,aDq,a pn(x; a, b; q)− (tn(a)− t∗n(a))Dq,a pn(x; a, b; q),
(58)

=t∗n(a)Dq,aD1/q,a pn(x; a, b; q)− (tn(a)− t∗n(a))D1/q,a pn(x; a, b; q),
(59)
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where tn(a) = (aqn+1 − 1)(x − aq), and t∗n(a) = (a − 1)bqn+1(aq − 1), which is connected 268

with the big q-Jacobi polynomials case (see [14, (14.5.5)]). By using the theory of Sturm- 269

Liouville, the result holds. The result also holds for the parameter b by symmetry. 270

From Lemma 8 we can deduce some new identities related to the big q-Laguerre 271

polynomials. 272

Theorem 10. For any a, b ∈ C, and any n, k ∈ N0, the following Rodrigues-type identities hold: 273

pn(qkx; aqk, bqk; q) =
(aq, bq; q)k
(x; q)k

∇k
n pn+k(x; a, b; q), (60)

pn(qkx; aqk, bqk; q) =
qnkq(

k+1
2 )(bq; q)k

(qn+1, x; q)k

(aqk−1 − 1)(1 − aqk)

aqk Dq,a · · ·
(a − 1)(1 − aq)

aq
Dq,a pn+k(x; a, b; q).

(61)

Proof. The identities holds by mathematical induction on k after a straightforward simpli- 274

fication and using (52) and (55). 275

The last result concerning the operators associated with the big q-Laguerre polynomials 276

is as follows. 277

Proposition 3. The following identity holds: 278(
cqn+1 − 1

)(
cqn+2 − 1

)(
βqn+1 − 1

)(
βqn+2 − 1

)
q4n(cq − 1)(βq − 1)

pn+1(q4x, aq, bq; q) =
4

∑
k=0

pk(x)D k
q pn(x; a, b; q)

where the polynomial coefficients are 279

p0(x) =
1
q
(
(q4x−1)(a + b + aq + bq + abq) + (a + b)(1 + q)(aq2−1)(bq2−1)

)
,

p1(x) =
(q−1)

q2

(
(q4x − 1)(ab + a2q + 2abq + a2bq + b2q + ab2q + abq2 + a2bq2 + ab2q2)

+ (aq2−1)(bq2−1)(ab + a2q + 2abq + b2q + abq2)
)
,

p2(x) =
ab(q−1)2

q2

(
(q4x−1)(a + b + ab + aq + a2q + bq + 2abq + b2q + abq2)

+ (a + b)(1 + q)(aq2−1)(bq2−1)
)
,

p3(x) =
a2b2(q−1)3

q2

(
(q4x−1)(1 + a + b + aq + bq) + (aq2−1)(bq2−1)

)
,

p4(x) =
a3b3(q−1)4

q2 (q4x−1).

Proof. The proof follows after using an algorithm written in Wolfram Mathematica 13. 280

4.5. The little q-Laguerre/Wall polynomials 281

The little q-Laguerre polynomials can be written in terms of basic hypergeometric 282

series as [14, §14.20] 283

pn(x; a|q) = 2ϕ1

(
q−n, 0

aq
; q, qx

)
.

In this case ϕ(x) = (1 − x)x and ϕ∗(x) = ax, i.e., c = 0, and pn(c; a|q) = 1. Taking this into 284

account we can state the following result. 285
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Lemma 9. For any a ∈ C, and any n ∈ N0, the following identities hold: 286

q1−n x
aq−1

pn−1(x; aq|q) =∇n pn(x; a|q), (62)

(1−a)(x−1)pn(x/q; a/q|q) =(aqn+1−1)∆n pn(x; a|q)−(ax + 1−a)pn(x; a|q), (63)

(1−a)(x−1)pn−1(x/q; a/q|q) =(ax + (qn−1)a)∇n pn(x; a|q)−(ax + 1−a)pn(x; a|q), (64)

a(1 − qn)x
qn−1(1 − a)(1 − aq)

pn−1(x; aq|q) =D1/q,a pn(x; a|q), (65)

(a − 1)qn(aq − 1)pn(x; a/q|q) =(aqn+1 − 1)xD1/q,a pn(x; a|q)

+ (aq(qn−1)x + qn(aq−1)(a−1))pn(x; a|q), (66)

a(a−1)qn−1(qn−1)pn−1(x; a/q|q) =(a − 1)(x + aq2n−1 − aqn−1)Dq,a pn(x; a|q)
+ (a(qn−1)x + (1−a)aqn−1(qn−1))pn(x; a|q). (67)

Proof. All these identities can be checked by identifying the polynomial coefficients on 287

the left and right-hand sides of each identity and with the help of Wolfram Mathematica 288

13. 289

A direct consequence is the fact this polynomial sequence is orthogonal with respect 290

to the parameter a. 291

Theorem 11. For any a ∈ C, any x ∈ C, x ̸∈ {1, aq}, and any n ∈ N0, the polynomial sequence 292(
pn(x; aqk|q)

)
k is orthogonal with respect to certain moment functional. 293

Proof. By combining (55), (56) and (57) we have the following second order difference 294

equations: 295

aqx(qn − 1)pn(x; a|q) =sn(a)D1/q,aDq,a pn(x; a|q)− (sn(a)− s∗n(a))Dq,a pn(x; a|q) (68)

=s∗n(a)Dq,aD1/q,a pn(x; a|q)− (sn(a)− s∗n(a))D1/q,a pn(x; a|q) (69)

where sn(a) = (a − 1)qn(aq − 1), and s∗n(a) = (1 − aqn+1)x, which is connected with the 296

big q-Laguerre polynomials case (see [14, (14.11.5)]). By using the theory of Sturm-Liouville, 297

the result holds. 298

The last result concerning the operators associated with the little q-Laguerre polyno- 299

mials is as follows. 300

Proposition 4. The following identity holds: 301(
aqn+1 − 1

)(
aqn+2 − 1

)
q3n(q − 1)(aq − 1)

pn+1(q4x, aq|q) =
4

∑
k=0

pk(x)D k
q pn(x; a|q)
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where the polynomial coefficients are 302

p0(x) =
1
q3

(
q4x(aq3 − aq − 1 − q − q2) + (aq2−1)(aq3 − 1 − q − q2)

)
,

p1(x) =
(q−1)

q5

(
aq9x2 + q4x(a2q4 + a2q3 − 1 − a − q − 2aq − q2 − aq2 + aq3 + aq4)

+ (aq2−1)(aq4 − 1 − q − q2 + aq3)
)
,

p2(x) =
(q−1)2

q6

(
aq8x2(1 + q + aq) + q3x(a2q5 + 2a2q4 − a − q − 2aq − 2aq2 + a2q3 + aq4)

+ (aq2−1)(aq3−1)
)
,

p3(x) =
a(q−1)3x

q4

(
q5x(1 + a + aq) + (1 + q)(−1 + aq3)

)
,

p4(x) =a2(q−1)4x2.

Proof. The proof follows after using an algorithm written in Wolfram Mathematica 13. 303

4.6. The Stieltjes-Wigert polynomials 304

These polynomials can be written in terms of basic hypergeometric series as [14, 305

§14.21] 306

Sn(x; q) = 1ϕ1

(
q−n

0
; q,−qn+1x

)
. (70)

In this case ϕ(x) = x2 and ϕ∗(x) = x, i.e., c = 0, and Sn(c; q) = 1. Taking this into account 307

we can state the following result. 308

Lemma 10. For any n ∈ N0, the following identities hold: 309

∇nSn(x; q) =− qnxSn−1(qx; q), (71)

Sn(x; q) + q−n−1∆n Sn(x; q) =Sn+1(x/q; q), (72)

Sn(x; q)− (1 − q−n)∇nSn(x; q) =Sn(x/q; q). (73)

From Lemma 10 we can deduce some a new identities related to the Stieltjes-Wigert 310

polynomials. 311

Theorem 12. For any n, k ∈ N0, the following Rodrigues-type identities hold: 312

Sn(x; q) =
1

(−x)k q−n∇n · · · q−n∇nSn+k(x/qk; q), (74)

Sn(x; q) =(−1)n(q; q)nq−n∆n · · · q−n+k∆n
(−1)n

(q; q)n−k
Sn−k(xqk; q). (75)

Proof. The first identity holds by mathematical induction on k after a straightforward 313

simplification and using (71). 314

The second identity holds by mathematical induction on k after a straightforward 315

simplification and using (72) written in the following way: 316

(−q)n

(q; q)n
Sn(x; q) = ∆n

(−1)n

(q; q)n−1
Sn−1(xq; q).

317

The last result concerning the operators associated with the Stieltjes-Wigert polynomi- 318

als is as follows. 319



Version December 23, 2024 submitted to Mathematics 16 of 17

αn βn γn d2
n

L −n − α − 1 2n + α + 1 −n
n!Γ2(α + 1)
Γ(n + α + 1)

C −a n + a −n
n!
an

M
c(n + β)

c − 1
−n + c(n + β)

c − 1
n

c − 1
n!Γ(β)

Γ(β + n)cn

M
n + β

c − 1
−β − αn − γn

nc
c − 1

n!Γ(β)cn

Γ(β + n)

bqL (1−aqn+1)(1−bqn+1) 1 − αn − γn abqn+1(qn−1)
(q−1; q−1)n qn

(a−1q−1, b−1q−1; q−1)n

qM
(c + qn+1)(bqn+1 − 1)

q2n+1 bq − αn − γn
cq(qn − 1)

q2n+1
(q; q)n

(bq,−c−1q; q)n qn

lqL qn(aqn+1 − 1) −αn − γn aqn(qn − 1)
(q; q)nanqn

(aq; q)n

qL
qn+1+α − 1

q2n+1+α
−αn − γn

q(qn − 1)
q2n+α+1

(q; q)n

(q(α+1); q)qn

qC − a + qn+1

q2n+1 −αn − γn
aq(qn − 1)

q2n+1
(q; q)n

(−a−1q, q)nqn

0LB −aq2n+1 −αn − γn −aqn(qn − 1)
(q, q)nanqn

(aq, q)n

SW
−1

q2n+1 −αn − γn
q(qn − 1)

q2n+1
(q; q)n

qn

Table 1. Essential data of the Laguerre-type classical orthogonal polynomials

Proposition 5. The following identity holds: 320

(q − x)Sn(x; q) + (1 − q)xD1/qSn(x; q) = qSn+1(x/q2; q).

Proof. The proof follows after using an algorithm written in Wolfram Mathematica 13. 321
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