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The FM was already used by Darboux, Schrödinger, Infeld and Hull and oth-

ers to obtain the solutions of certain differential equations. Later on, Miller

extended it to difference and q-differences equations in the Hahn sense.

The classical FM was based on the existence of a so-called raising and

lowering operators for the corresponding equation that allows to find the

explicit solutions in a very easy way. Going further, Atakishiyev and coau-

thors have found the dynamical symmetry algebra related with the FM and

the differential or difference equations [3]. Also Smirnov [8] have been

worked in the similar work line. Using the idea by Bangerezako [4] for the

Askey–Wilson polynomials and Lorente [6] solve the problem for the clas-

sical continuous and discrete cases. Here we will obtain the FM for the

general polynomial solutions of the hypergeometric difference equation on

the general quadratic nonuniform lattice x(s) = c1q
s + c2q

−s + c3. We will

use, as it is already suggested in [3, 8], not the polynomial solutions but

the corresponding normalized functions which is more natural and useful.

In such a way, the method proposed here is the generalization of [4] and [6]

to the aforementioned nonuniform lattice.
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1 The orthonormal functions on nonuniform lattices

Let Pn(x(s))q the polynomial solutions of the second order difference

equation of hypergeometric type

σ(s)
∆

∆x(s − 1/2)

[

∇y(s)

∇x(s)

]

+ τ (s)
∆y(s)

∆x(s)
+ λy(s) = 0. (1)

Here ∇f(s) = f(s) − f(s− 1), ∆f(s) = f(s + 1) − f(s), and x(s) =

C1(q
s + q−s−µ) + C3 being C1, C3 and µ constants.

Under certain conditions the polynomial solutions of (1) are orthogo-

nal. For example, if σ(s)ρ(s)xk(s − 1/2)
∣

∣

∣

b

b
= 0, ∀k ≥ 0, then the

polynomials Pn(s)q satisfy the following discrete orthogonality property

b−1
∑

s=a

Pn(x(s))qPm(x(s))qρ(s)∆x(s − 1/2) = δnmd2

n, (2)

where ρ(s) is a solution of the Pearson-type equation

△

∆x(s − 1/2)
[σ(s)ρ(s)] = τ (s)ρ(s) (3)

From the orthogonality follows the Three Terms Recurrence Relation:

x(s)Pn(x(s))q = αnPn+1(x(s))q + βnPn(x(s))q + γnPn−1(x(s))q

where αn, βn and γn are constants.

Let us introduce the set of orthonormal functions which are orthogonal

with respect to the unit weight

ϕn(s) =
√

ρ(s)/d2
nPn(x(s))q, (4)

e.g. for the case of discrete orthogonality we have

b−1
∑

si=a

ϕn(si)ϕm(si)∆x(si − 1/2) = δnm.
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2 Factorization of difference equation of hypergeometric

type on the nonuniform lattice

We will define from (1) the following operator

H(s, n) ≡
√

Θ(s − 1)σ(s)
1

∇x(s)
E− +

√

Θ(s)σ(s + 1)
1

∆x(s)
E+−

(

Θ(s)

∆x(s)
+

σ(s)

∇x(s)
− λn∆x(s − 1/2)

)

I,

where E−f(s) = f(s − 1), E+f(s) = f(s + 1) and If(s) = f(s).

Clearly, the orthonormal functions satisfy H(s, n)ϕn(s) = 0, and the

TTRR:

αn
dn+1

dn
ϕn+1(s) + γn

dn−1

dn
ϕn−1(s) + (βn − x(s))ϕn(s) = 0, (5)

Let us rewrite the raising and lowering operators in the following way

L+(s, n) = u(s, n)I +
√

Θ(s − 1)σ(s)
1

∇x(s)
E−,

L−(s, n) = v(s, n)I +
√

Θ(s)σ(s + 1)
1

∆x(s)
E+,

where, as before, Θ(s) = σ(s) + τ (s)∆x(s − 1/2), and

u(s, n) =
λn

[n]q

τn(s)

τ ′
n

−
σ(s)

∇x(s)
,

v(s, n) = −
λn

[n]q

τn(s)

τ ′
n

+ λn∆x(s − 1/2) +
λ2n

[2n]q
(x(s) − βn) −

Θ(s)

∆x(s)
.

Proposition 2.1 The operator H corresponding to the eigenvalue λn

in the difference equation is self adjoint.
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Proposition 2.2 The operators L+ and L− are mutually adjoint.

b−1
∑

si=a

ϕn+1(si)

[

[2n]q
λ2n

L+(si, n)ϕn(si)

]

∆x(si −
1

2
)

=

b−1
∑

si=a

[

[2n + 2]q
λ2n+2

L−(si, n + 1)ϕn+1(si)

]

ϕn(si)∆x(si −
1

2
) = αn

dn+1

dn
,

and L+(s, n)ϕn(s) = αn
λ2n

[2n]q

dn+1

dn
ϕn+1(s)

L−(s, n)ϕn(s) = γn
λ2n

[2n]q

dn−1

dn
ϕn−1(s).

Furthermore

L−(s, n + 1)L+(s, n) = h∓(n)I + u(s + 1, n)H(s, n),

L+(s, n − 1)L−(s, n) = h±(n)I + u(s, n − 1)H(s, n),

where

h±(n) =
λ2n−2

[2n − 2]q

λ2n

[2n]q
αn−1γn.

All the above results lead us to our main theorem:

Theorem 2.1 The operator H(s, n), corresponding to the hypergeo-

metric difference equation for orthonormal functions ϕn(s), admits the

following factorization –usually called the Infeld-Hull-type factorization–

u(s + 1, n)H(s, n) = L−(s, n + 1)L+(s, n) − h∓(n)I, (6)

u(s, n)H(s, n + 1) = L+(s, n)L−(s, n + 1) − h∓(n)I, (7)

respectively.

Remark: Substituting in the above formulas the expression x(s) = s

we obtain the corresponding results for the uniform lattice cases (Hahn,
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Kravchuk, Meixner and Charlier), considered before by Atakishiyev, Lorente,

Smirnov, . . . and by taking appropriate limits we can recover the classical

continuous case (Jacobi, Laguerre and Hermite).

3 Applications to q-normalized orthogonal functions

For the sake of completeness we will apply the above results to several

families of orthogonal q-polynomials and their corresponding orthonor-

mal q-functions that are of interest and appear in several branches of

mathematical physics.

The big q-Jacobi functions

Now we will consider the most general family of q-polynomials on the

exponential lattice, the big q-Jacobi polynomials, that appear in the

representation theory of the quantum algebras. They were introduced

by Hahn in 1949 and are defined by

Pn(x; a, b, c; q) =
(aq; q)n(cq; q)n
(abqn+1; q)n

3φ2

(

q−n, abqn+1, x
q; q

aq, cq

)

, x ≡ qs

The corresponding Hamiltonian is

H(x, n) =

√

a(x−q)(x−aq)(x−cq)(bx−cq)

x(q−1)
E− +

q

√

a(x−1)(x−a)(x−c)(bx−c)

x(q−1)
E+ +

(

1 + abq2n+1

qn(1 − q)
x −

q(a + ab + c + ac)

1 − q
+

acq(q + 1)

1 − q
x−1

)

I.

In this case

L−(x, n + 1)L+(x, n) = δn+1γn+1I + v(x, n + 1)H(x, n),

L+(x, n − 1)L−(x, n) = δnγnI + u(x, n − 1)H(x, n),



6

being

δn =
(1 − abq2n−1)(1 − abq2n+1)

q2n−1(q − 1)2
.

The above formulas are the factorization formulas for the family of the

big q-Jacobi normalized functions.

Since all discrete q-polynomials on the exponential lattice x(s) = c1q
s +

c3 —the so called, q-Hahn class— can be obtained from the big q-Jacobi

polynomials by a certain limit process, then from the above formulas we

can obtain the factorization formulas for the all other cases in the q-

Hahn tableau. Of special interest are the q-Hahn polynomials and the

big q-Laguerre polynomials, which are particular cases of the big q-Jacobi

polynomials when c = q−N−1, N = 1, 2, . . ., and c = 0, respectively.

3.1 The Askey–Wilson functions

Finally we will consider the family of Askey–Wilson polynomials. They

are polynomials on the lattice x(s) = 1/2(qs + q−s) ≡ x, defined by

pn(x(s); a, b, c, d) =
(ab; q)n(ac; q)n(ad; q)n

an
×

4φ3

(

q−n, qn−1abcd, ae−iθ, aeiθ

q; q
ab, ac, ad

)

,

that correspond to the general case qs1 = a, qs2 = b, qs3 = c, qs4 = d.

Their orthogonality relation is of the form
∫

1

−1

ω(x)pn(x; a, b, c, d)pm(x; a, b, c, d)
√

1 − x2κqdx = δnmd2

n, x = cos θ,

where

ω(x) =
h(x, 1)h(x,−1)h(x, q

1

2)h(x,−q
1

2)

2πκq(1 − x2)h(x, a)h(x, b)h(x, c)h(x, d)
,
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h(x, α) =

∞
∏

k=0

[1 − 2αxqk + α2q2k],

Defining now the normalized functions
√

ω(x)/d2
npn(x; a, b, c, d),

the corresponding Hamiltonian H(s, n) is

H(s, n) =
2q3/2

[2s − 1]q
G(s, a, b, c, d)E− +

2q3/2

[2s + 1]q
G(s + 1, a, b, c, d)E+ +

2
(

q−2s+1/2

∏

4

i=1
(1 − qsi+s)

[2s + 1]q
+ q−2s+1/2

∏

4

i=1
(qs − qsi)

[2s − 1]q
+

q−n+1κ2
q(1 − qn)(1 − abcdqn−1)[2s]q

)

I

where

G(s, a, b, c, d) =

√

√

√

√

4
∏

i=1

(1 − 2qsiq−1/2x(s − 1/2) + q−1q2si),

Thus,

L−(s, n + 1)L+(s, n) = D2nD2n+2γn+1I + v(s, n + 1)H(s, n),

and

L+(s, n − 1)L−(s, n) = D2n−2D2nγnI + u(s, n − 1)H(s, n),

where

Dn = −4q−n/2+1/2(q − 1)(1 − abcdqn−1).

which is the factorization formula for the Askey–Wilson functions. Fi-

nally, let us consider the special case of Askey–Wilson polynomials when

a = b = c = d = 0, i.e., the continuous q-Hermite polynomials which

are closely related with the q-harmonic oscillator model introduced in

1989 by Biedenharn and Macfarlane. The factorization for this “simple”

case was considered by Atakishiyev and Suslov in 1991.

Obviously the factorization for this case follows from the Askey-Wilson

case substituting a = b = c = d = 0 in the above formulas.
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What next?

Problem 1:

To find two operators a(s) and b(s) and a constant ς such

that the Hamiltonian Hq(s) = b(s)a(s) and [a(s), b(s)]ς :=

a(s)b(s) − ςb(s)a(s) = I.

There are previous works by Atakishiyev and Suslov: q−Hermite con-

tinuous, Atakishiev, Suslov and Askey: q-Charlier, Suslov and Askey:

Al-Salam y Chihara

Definition:A function f(z) is said to be a q-linear func-

tion of z if there exist two functions F and G independent

of z such that for all z, ζ ∈ C

f(z + ζ) = F (ζ)f(z) + G(ζ).

Important result: The solution of the problem 1 exists iff λn is a

q-linear or q−1-linear function of n.

All the known q-examples: satisfy the above condition.

Open questions:

1) When the operators are mutually adjoint?

2) Applications to some q-models of the linear oscillator
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