rscosan.com

Paper: Extensions of discrete classical orthogonal polynomials beyond the orthogonality


Extensions of discrete classical orthogonal polynomials beyond the orthogonality

Costas-Santos, R. S. and Sanchez-Lara, J. F. Journal of Computational and Applied Mathematics 225, no. 2 (2009), 440 — 451

ELSEVIER SCIENCE BV (NETHERLANDS) | ISSN: 0377-0427 | JCR® 2009 Impact Factor: 1.292 - MATHEMATICS, APPLIED — position: 46/204 (Q1/T1)

Abstract

It is well-known that the family of Hahn polynomials is orthogonal with respect to a certain weight function up to degree N. In this paper we prove, by using the three-term recurrence relation which this family satisfies, that the Hahn polynomials can be characterized by a ∆-Sobolev orthogonality for every n and present a factorization for Hahn polynomials for a degree higher than N.

We also present analogous results for dual Hahn, Krawtchouk, and Racah polynomials and give the limit relations among them for all nN. Furthermore, in order to get these results for the Krawtchouk polynomials we will obtain a more general property of orthogonality for Meixner polynomials.

Download

Link Size Description
228 KB Preprint (PDF, 20 Pages)

BibTeX

@article {MR2494714,
AUTHOR = {Costas-Santos, R. S.; Sanchez-Lara, J. F.},
TITLE = {Extensions of discrete classical orthogonal polynomials beyond the orthogonality},
JOURNAL = {J. Comput. Appl. Math.},
FJOURNAL = {Journal of Computational and Applied Mathematics},
VOLUME = {225},
NUMBER={2},
YEAR = {2009},
PAGES = {440--451},
ISSN = {1081-3810},
MRCLASS = {33C45 (33C47 42C05)},
MRNUMBER = {MR2494714},
ZBL = {1167.42008},
MRREVIEWER = {Alicia Cachafeiro},
DOI = {10.1016/j.cam.2008.07.055},
URL = {https://doi.org/10.1016/j.cam.2008.07.055},
}
Date: 2021/11/17