Double summation addition theorems for Jacobi functions of the first and second kind

Cohl, H. S., Costas-Santos R.S., Durand, L., Montoya C. and Ólafsson, G. Contemporary Mathematics 818, Classical Hypergeometric Functions and Generalizations, Amer. Math. Soc., Providence, RI, Eds: Howard S. Cohl, Roberto S. Costas-Santos and Robert S. Maier, 25—70, 2025

Abstract

We study special values for the continuous \(q\)-Jacobi polynomials and present applications of these special values, which arise from bilinear generating functions and, in particular, the Poisson kernel for these polynomials.

Download

Link Size Description
485 KB PDF, 41 Pages

BibTeX

@incollection {MR4901158,
AUTHOR={Cohl, H. S. and Costas-Santos, R. S. and Durand, L. and Montoya, C. and \'{O}lafsson, G.},
TITLE={Double summation addition theorems for {J}acobi functions of the first and second kind},
BOOKTITLE={Classical hypergeometric functions and generalizations},
SERIES={Contemp. Math.},
VOLUME={818},
PAGES={25--70},
PUBLISHER={Amer. Math. Soc., [Providence], RI},
YEAR={[2025] \copyright 2025},
MRCLASS={54C40 (33C45)},
MRNUMBER={4901158},
DOI={10.1090/conm/818/16367},
URL={https://doi.org/10.1090/conm/818/16367},
}